Properties

Label 3600.l.15.a1.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}.S_4$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 3 & 1 & 9 & 6 \\ 10 & 2 & 7 & 9 \\ 6 & 4 & 9 & 10 \\ 2 & 6 & 1 & 8 \end{array}\right), \left(\begin{array}{rrrr} 3 & 2 & 7 & 1 \\ 9 & 10 & 7 & 7 \\ 1 & 4 & 1 & 9 \\ 9 & 1 & 2 & 8 \end{array}\right), \left(\begin{array}{rrrr} 5 & 4 & 9 & 9 \\ 1 & 4 & 0 & 9 \\ 9 & 9 & 7 & 7 \\ 10 & 9 & 10 & 6 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right), \left(\begin{array}{rrrr} 3 & 4 & 3 & 2 \\ 9 & 10 & 7 & 3 \\ 6 & 5 & 7 & 7 \\ 9 & 6 & 2 & 3 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable.

Ambient group ($G$) information

Description: $C_5\times \SL(2,9)$
Order: \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}.S_4$
Normal closure:$C_5\times \SL(2,9)$
Core:$C_{10}$
Minimal over-subgroups:$C_5\times \SL(2,9)$
Maximal under-subgroups:$C_5\times \SL(2,3)$$C_5\times Q_{16}$$C_3:C_{20}$$C_2.S_4$
Autjugate subgroups:3600.l.15.a1.b1

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$-1$
Projective image$A_6$