Properties

Label 34992.gl.6.A
Order $ 2^{3} \cdot 3^{6} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_3^3$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(1,5,8)(4,6,7), (1,2,8,9,5,3)(4,7)(10,12,11,14,13,15), (1,2,6)(3,4,8,9,7,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^3:S_3^4$
Order: \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times S_4^2$, of order \(1259712\)\(\medspace = 2^{6} \cdot 3^{9} \)
$\operatorname{Aut}(H)$ $C_3^3.\He_3.C_6.C_2^4$
$W$$C_3^4:D_6^2$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^3:S_3^4$
Complements:$S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$
Minimal over-subgroups:$C_3^4:S_3^3$$C_3^4:D_6^2$
Maximal under-subgroups:$C_3^5:D_6$$C_3^5:D_6$$C_3^4:(C_6\times S_3)$$C_3^5:D_6$$C_3^5:D_6$$C_3^2:S_3^3$$C_3^2.S_3^3$$C_3^2:S_3^3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_3^3:S_3^4$