Properties

Label 34992.gl.5832.BM
Order $ 2 \cdot 3 $
Index $ 2^{3} \cdot 3^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,9,6)(2,7,8)(3,4,5)(16,17,18), (1,9)(2,8)(3,5)(10,12)(11,14)(13,15)(17,18)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Ambient group ($G$) information

Description: $C_3^3:S_3^4$
Order: \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times S_4^2$, of order \(1259712\)\(\medspace = 2^{6} \cdot 3^{9} \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure:$C_3^3:S_3^2$
Core:$C_1$
Minimal over-subgroups:$D_6$$D_6$$D_6$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this autjugacy class$972$
Number of conjugacy classes in this autjugacy class$6$
Möbius function not computed
Projective image$C_3^3:S_3^4$