Properties

Label 34992.gl.11664.B
Order $ 3 $
Index $ 2^{4} \cdot 3^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(3\)
Generators: $\langle(10,13,11)(12,15,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_3^3:S_3^4$
Order: \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and rational.

Quotient group ($Q$) structure

Description: $C_3^4:D_6^2$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_3^5.C_6.C_6.C_2^3$
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, supersolvable (hence solvable and monomial), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times S_4^2$, of order \(1259712\)\(\medspace = 2^{6} \cdot 3^{9} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3^4:S_3^3$
Normalizer:$C_3^3:S_3^4$
Complements:$C_3^4:D_6^2$
Minimal over-subgroups:$C_3^2$$C_3^2$$S_3$$S_3$$S_3$$S_3$$S_3$$S_3$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_3^3:S_3^4$