Properties

Label 3456.qg.4.b1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:\GL(2,\mathbb{Z}/4)$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(9,13)(10,11), (2,3)(8,15,12,14)(9,10), (1,3,2)(8,12)(14,15), (5,7,6)(9,13,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6.S_4^2$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.S_3^3$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $S_4\times D_6^2$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\operatorname{res}(S)$$S_4\times D_6^2$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$A_4:S_3^2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_3^2:\GL(2,\mathbb{Z}/4)$
Normal closure:$C_6.S_4^2$
Core:$C_6.S_4$
Minimal over-subgroups:$C_6.S_4^2$
Maximal under-subgroups:$C_6:S_3\times A_4$$C_6^2:D_6$$C_3\times C_6.S_4$$D_6:S_4$$D_6:S_4$$C_6^2:D_4$$C_3^2:D_{12}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3:S_4^2$