Properties

Label 3456.qg
Order \( 2^{7} \cdot 3^{3} \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $15$
Trans deg. $108$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 15 | (1,3,2)(4,5,7,6)(8,14)(11,13)(12,15), (4,5,6)(10,13,11), (1,2,3)(4,6,7)(8,12)(14,15), (4,5,7), (4,5)(6,7), (4,7)(5,6), (1,3,2)(4,6,5)(9,10)(11,13), (1,3,2), (1,2,3)(4,5)(6,7)(9,13)(10,11), (2,3)(4,7)(5,6)(8,15,12,14)(11,13) >;
 
Copy content gap:G := Group( (1,3,2)(4,5,7,6)(8,14)(11,13)(12,15), (4,5,6)(10,13,11), (1,2,3)(4,6,7)(8,12)(14,15), (4,5,7), (4,5)(6,7), (4,7)(5,6), (1,3,2)(4,6,5)(9,10)(11,13), (1,3,2), (1,2,3)(4,5)(6,7)(9,13)(10,11), (2,3)(4,7)(5,6)(8,15,12,14)(11,13) );
 
Copy content sage:G = PermutationGroup(['(1,3,2)(4,5,7,6)(8,14)(11,13)(12,15)', '(4,5,6)(10,13,11)', '(1,2,3)(4,6,7)(8,12)(14,15)', '(4,5,7)', '(4,5)(6,7)', '(4,7)(5,6)', '(1,3,2)(4,6,5)(9,10)(11,13)', '(1,3,2)', '(1,2,3)(4,5)(6,7)(9,13)(10,11)', '(2,3)(4,7)(5,6)(8,15,12,14)(11,13)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(270069972609120399314639009828226019952820132170438208753258997598186787917038518039913521501200751689,3456)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.9;
 

Group information

Description:$C_6.S_4^2$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^6.S_3^3$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and monomial (hence solvable).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12
Elements 1 247 242 648 1022 1296 3456
Conjugacy classes   1 10 8 9 26 12 66
Divisions 1 10 7 9 23 6 56
Autjugacy classes 1 10 7 9 23 6 56

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 8 9 12 18 36
Irr. complex chars.   4 13 8 10 18 0 4 4 5 0 66
Irr. rational chars. 4 7 8 9 10 2 4 8 3 1 56

Minimal presentations

Permutation degree:$15$
Transitive degree:$108$
Rank: $2$
Inequivalent generating pairs: $54$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 36 36
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f \mid b^{12}=c^{2}=d^{6}=e^{2}=f^{6}=[a,c]=[a,f]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, -2, -2, -2, -3, -2, 2, -3, -2, 2, -3, 11760, 25881, 51, 4922, 82, 1603, 3614, 2124, 934, 15845, 7935, 3265, 575, 175, 13446, 6736, 161287, 3417, 1507, 142578, 4918, 878, 268, 115219]); a,b,c,d,e,f := Explode([G.1, G.2, G.5, G.6, G.8, G.9]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "e", "f", "f2"]);
 
Copy content gap:G := PcGroupCode(270069972609120399314639009828226019952820132170438208753258997598186787917038518039913521501200751689,3456); a := G.1; b := G.2; c := G.5; d := G.6; e := G.8; f := G.9;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(270069972609120399314639009828226019952820132170438208753258997598186787917038518039913521501200751689,3456)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.9;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(270069972609120399314639009828226019952820132170438208753258997598186787917038518039913521501200751689,3456)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.9;
 
Permutation group:Degree $15$ $\langle(1,3,2)(4,5,7,6)(8,14)(11,13)(12,15), (4,5,6)(10,13,11), (1,2,3)(4,6,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 15 | (1,3,2)(4,5,7,6)(8,14)(11,13)(12,15), (4,5,6)(10,13,11), (1,2,3)(4,6,7)(8,12)(14,15), (4,5,7), (4,5)(6,7), (4,7)(5,6), (1,3,2)(4,6,5)(9,10)(11,13), (1,3,2), (1,2,3)(4,5)(6,7)(9,13)(10,11), (2,3)(4,7)(5,6)(8,15,12,14)(11,13) >;
 
Copy content gap:G := Group( (1,3,2)(4,5,7,6)(8,14)(11,13)(12,15), (4,5,6)(10,13,11), (1,2,3)(4,6,7)(8,12)(14,15), (4,5,7), (4,5)(6,7), (4,7)(5,6), (1,3,2)(4,6,5)(9,10)(11,13), (1,3,2), (1,2,3)(4,5)(6,7)(9,13)(10,11), (2,3)(4,7)(5,6)(8,15,12,14)(11,13) );
 
Copy content sage:G = PermutationGroup(['(1,3,2)(4,5,7,6)(8,14)(11,13)(12,15)', '(4,5,6)(10,13,11)', '(1,2,3)(4,6,7)(8,12)(14,15)', '(4,5,7)', '(4,5)(6,7)', '(4,7)(5,6)', '(1,3,2)(4,6,5)(9,10)(11,13)', '(1,3,2)', '(1,2,3)(4,5)(6,7)(9,13)(10,11)', '(2,3)(4,7)(5,6)(8,15,12,14)(11,13)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_6.S_4)$ $\,\rtimes\,$ $S_4$ $(C_6:S_4)$ $\,\rtimes\,$ $S_4$ $A_4$ $\,\rtimes\,$ $(D_6:S_4)$ $(A_4^2:D_6)$ $\,\rtimes\,$ $C_2$ all 25
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_6$ . $S_4^2$ $C_2$ . $(C_3:S_4^2)$ $(C_2\times A_4^2)$ . $D_6$ $(C_2^3\times A_4)$ . $S_3^2$ (2) all 12

Elements of the group are displayed as permutations of degree 15.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 29096 subgroups in 1290 conjugacy classes, 45 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_3:S_4^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_6\times A_4^2$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $C_3:S_4^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^4\times C_6$ $G/\operatorname{Fit} \simeq$ $S_3^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_6.S_4^2$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^4\times C_6$ $G/\operatorname{soc} \simeq$ $S_3^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^4:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^3$

Subgroup diagram and profile

Series

Derived series $C_6.S_4^2$ $\rhd$ $C_6\times A_4^2$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_6.S_4^2$ $\rhd$ $A_4^2:D_6$ $\rhd$ $C_6\times A_4^2$ $\rhd$ $C_3\times A_4^2$ $\rhd$ $C_2^2:C_6^2$ $\rhd$ $C_2^2:C_6^2$ $\rhd$ $C_2^3\times C_6$ $\rhd$ $C_2^4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_6.S_4^2$ $\rhd$ $C_6\times A_4^2$ $\rhd$ $C_3\times A_4^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $66 \times 66$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $56 \times 56$ rational character table.