Properties

Label 336.227.7.a1
Order $ 2^{4} \cdot 3 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_6$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(7\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, d^{14}, b, c, d^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_2^2\times D_{42}$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times C_2^3.\PSL(2,7)\times F_7$
$\operatorname{Aut}(H)$ $S_3\times C_2^3:\GL(3,2)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$S_3\times C_2^3:\GL(3,2)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times D_6$
Normal closure:$C_2^2\times D_{42}$
Core:$C_2^2\times C_6$
Minimal over-subgroups:$C_2^2\times D_{42}$
Maximal under-subgroups:$C_2^2\times C_6$$C_2\times D_6$$C_2^4$

Other information

Number of subgroups in this autjugacy class$7$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$D_{21}$