Subgroup ($H$) information
Description: | $C_2^2\times D_6$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Index: | \(7\) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$a, d^{14}, b, c, d^{21}$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.
Ambient group ($G$) information
Description: | $C_2^2\times D_{42}$ |
Order: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_3\times C_2^3.\PSL(2,7)\times F_7$ |
$\operatorname{Aut}(H)$ | $S_3\times C_2^3:\GL(3,2)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \) |
$\operatorname{res}(S)$ | $S_3\times C_2^3:\GL(3,2)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $7$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $D_{21}$ |