Properties

Label 336.104.7.a1.a1
Order $ 2^{4} \cdot 3 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:Q_{16}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(7\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, c^{7}, b, b^{6}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{21}:Q_{16}$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^4\times C_6)$
$\operatorname{Aut}(H)$ $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_3:D_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_3:Q_{16}$
Normal closure:$C_{21}:Q_{16}$
Core:$C_3\times Q_8$
Minimal over-subgroups:$C_{21}:Q_{16}$
Maximal under-subgroups:$C_3\times Q_8$$C_3:Q_8$$C_3:C_8$$Q_{16}$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$C_{21}:D_4$