Subgroup ($H$) information
Description: | $C_3:Q_8$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Index: | \(14\)\(\medspace = 2 \cdot 7 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$ab, b^{6}, b^{4}, c^{7}$
|
Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{21}:Q_{16}$ |
Order: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{42}.(C_2^4\times C_6)$ |
$\operatorname{Aut}(H)$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(S)$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$W$ | $C_3:D_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Centralizer: | $C_2$ | ||
Normalizer: | $C_3:Q_{16}$ | ||
Normal closure: | $C_{21}:Q_8$ | ||
Core: | $C_{12}$ | ||
Minimal over-subgroups: | $C_{21}:Q_8$ | $C_3:Q_{16}$ | |
Maximal under-subgroups: | $C_{12}$ | $C_3:C_4$ | $Q_8$ |
Other information
Number of subgroups in this conjugacy class | $7$ |
Möbius function | $1$ |
Projective image | $C_{21}:D_4$ |