Properties

Label 331776.a.48.B
Order $ 2^{8} \cdot 3^{3} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(13,15)(14,16), (5,8)(6,7)(9,11)(10,12)(13,16)(14,15), (2,4)(5,7,8,6)(11,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^8.C_3^4:\OD_{16}$
Order: \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2\wr C_2.C_2^2.D_4$, of order \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_4^3:C_2$, of order \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \)
$W$$A_4:S_4^2$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$A_4^3.C_2^3$
Normal closure:$C_2^8.C_3^3.D_6$
Core:$C_1$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^8.C_3^4:\OD_{16}$