Properties

Label 331776.a.331776.a1
Order $ 1 $
Index $ 2^{12} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, a semidirect factor, cyclic (hence elementary (for every $p$), hyperelementary, metacyclic, and a Z-group), stem, a $p$-group (for every $p$), perfect, and rational. Whether it is a direct factor has not been computed.

Ambient group ($G$) information

Description: $C_2^8.C_3^4:\OD_{16}$
Order: \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^8.C_3^4:\OD_{16}$
Order: \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Automorphism Group: $A_4^2\wr C_2.C_2^2.D_4$, of order \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2\wr C_2.C_2^2.D_4$, of order \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^8.C_3^4:\OD_{16}$
Normalizer:$C_2^8.C_3^4:\OD_{16}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^8.C_3^4:\OD_{16}$