Properties

Label 331776.a.36.N
Order $ 2^{10} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4.A_4^2:C_4$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(13,15)(14,16), (5,8)(6,7)(9,11)(10,12)(13,16)(14,15), (5,8)(6,7)(13,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^8.C_3^4:\OD_{16}$
Order: \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2\wr C_2.C_2^2.D_4$, of order \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2^8.F_9:C_2$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
$W$$C_2^4.A_4^2:C_4$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^4.A_4^2:C_4$
Normal closure:$A_4^2:(A_4^2:C_4)$
Core:$C_2^8$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^8.C_3^4:\OD_{16}$