Properties

Label 3281250.c.3.a1
Order $ 2 \cdot 5^{7} \cdot 7 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^7:D_7$
Order: \(1093750\)\(\medspace = 2 \cdot 5^{7} \cdot 7 \)
Index: \(3\)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $h, gh^{4}, b^{21}, ef^{2}g^{4}h^{4}, ce^{2}f^{2}gh^{2}, fg^{3}h^{4}, a^{3}, b^{5}cd^{2}e^{2}f^{4}g^{3}, de^{3}f^{4}h^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, solvable, and an A-group. Whether it is a direct factor or monomial has not been computed.

Ambient group ($G$) information

Description: $C_5^7:F_7$
Order: \(3281250\)\(\medspace = 2 \cdot 3 \cdot 5^{7} \cdot 7 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^6.C_{35}.C_3.C_4^2.C_2$
$\operatorname{Aut}(H)$ $C_5^6.C_{217}.C_{30}.C_2^3.C_2$
$W$$C_5^7:F_7$, of order \(3281250\)\(\medspace = 2 \cdot 3 \cdot 5^{7} \cdot 7 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_5^7:F_7$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_5^7:F_7$