Properties

Label 3248.g.8.a1.c1
Order $ 2 \cdot 7 \cdot 29 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{29}:C_{14}$
Order: \(406\)\(\medspace = 2 \cdot 7 \cdot 29 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(406\)\(\medspace = 2 \cdot 7 \cdot 29 \)
Generators: $b^{29}c, a^{4}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 7$.

Ambient group ($G$) information

Description: $C_2^2\times F_{29}$
Order: \(3248\)\(\medspace = 2^{4} \cdot 7 \cdot 29 \)
Exponent: \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times F_{29}$, of order \(19488\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 29 \)
$\operatorname{Aut}(H)$ $F_{29}$, of order \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \)
$\operatorname{res}(S)$$F_{29}$, of order \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$F_{29}$, of order \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\times F_{29}$
Complements:$C_2\times C_4$ $C_2\times C_4$ $C_2\times C_4$ $C_2\times C_4$
Minimal over-subgroups:$C_{58}:C_{14}$$C_{58}:C_{14}$$C_{58}:C_{14}$
Maximal under-subgroups:$C_{29}:C_7$$C_{58}$$C_{14}$
Autjugate subgroups:3248.g.8.a1.a13248.g.8.a1.b1

Other information

Möbius function$0$
Projective image$C_2\times F_{29}$