Properties

Label 3248.g.4.a1.c1
Order $ 2^{2} \cdot 7 \cdot 29 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{58}:C_{14}$
Order: \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(406\)\(\medspace = 2 \cdot 7 \cdot 29 \)
Generators: $a^{14}, b^{29}c, b^{2}, a^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_2^2\times F_{29}$
Order: \(3248\)\(\medspace = 2^{4} \cdot 7 \cdot 29 \)
Exponent: \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times F_{29}$, of order \(19488\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 29 \)
$\operatorname{Aut}(H)$ $C_2\times F_{29}$, of order \(1624\)\(\medspace = 2^{3} \cdot 7 \cdot 29 \)
$\operatorname{res}(S)$$F_{29}$, of order \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$F_{29}$, of order \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\times F_{29}$
Minimal over-subgroups:$C_2\times F_{29}$$C_2\times F_{29}$$D_{58}:C_{14}$
Maximal under-subgroups:$C_{29}:C_{14}$$C_{29}:C_{14}$$C_{29}:C_{14}$$D_{58}$$C_2\times C_{14}$
Autjugate subgroups:3248.g.4.a1.a13248.g.4.a1.b1

Other information

Möbius function$2$
Projective image$C_2\times F_{29}$