Properties

Label 3248.g.56.a1.c1
Order $ 2 \cdot 29 $
Index $ 2^{3} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{58}$
Order: \(58\)\(\medspace = 2 \cdot 29 \)
Index: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Exponent: \(58\)\(\medspace = 2 \cdot 29 \)
Generators: $b^{29}c, b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,29$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_2^2\times F_{29}$
Order: \(3248\)\(\medspace = 2^{4} \cdot 7 \cdot 29 \)
Exponent: \(812\)\(\medspace = 2^{2} \cdot 7 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_{28}$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Automorphism Group: $C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times F_{29}$, of order \(19488\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 29 \)
$\operatorname{Aut}(H)$ $C_{28}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_{28}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(232\)\(\medspace = 2^{3} \cdot 29 \)
$W$$C_{28}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_{58}$
Normalizer:$C_2^2\times F_{29}$
Complements:$C_2\times C_{28}$ $C_2\times C_{28}$ $C_2\times C_{28}$ $C_2\times C_{28}$
Minimal over-subgroups:$C_{29}:C_{14}$$D_{58}$$D_{58}$$C_2\times C_{58}$
Maximal under-subgroups:$C_{29}$$C_2$
Autjugate subgroups:3248.g.56.a1.a13248.g.56.a1.b1

Other information

Möbius function$0$
Projective image$C_2\times F_{29}$