Properties

Label 324000.bm.400.b1
Order $ 2 \cdot 3^{4} \cdot 5 $
Index $ 2^{4} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\wr C_3\times D_5$
Order: \(810\)\(\medspace = 2 \cdot 3^{4} \cdot 5 \)
Index: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $b^{6}d^{24}e^{9}f^{3}, d^{24}e^{6}f^{3}, f^{10}, d^{10}e^{10}f^{10}, b^{4}cd^{3}e^{5}f^{13}, d^{20}f^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_{15}.(C_{12}\times S_3^2)$
$W$$C_3^2:(S_3\times F_5)$, of order \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^3:(S_3\times F_5)$
Normal closure:$C_3^3:D_5\wr C_3$
Core:$C_3^3$
Minimal over-subgroups:$C_{15}\wr C_3:C_2$$C_3\wr S_3\times D_5$$(C_3^2\times C_{15}):C_{12}$$C_3\wr C_3:F_5$
Maximal under-subgroups:$C_3^3:C_{15}$$D_5\times C_3^3$$D_5\times \He_3$$C_{45}:C_6$$C_3^3:C_6$

Other information

Number of subgroups in this autjugacy class$100$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$