Properties

Label 324000.bm.200.b1
Order $ 2^{2} \cdot 3^{4} \cdot 5 $
Index $ 2^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3^2\times C_{15}):C_{12}$
Order: \(1620\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5 \)
Index: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $b^{3}, d^{20}f^{10}, b^{6}, f^{10}, b^{4}cd^{27}e^{11}f^{13}, d^{24}e^{6}f^{3}, d^{20}e^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $(\He_3.C_3^2):C_2^2\times F_5$
$W$$C_3^3:(S_3\times F_5)$, of order \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^3:(S_3\times F_5)$
Normal closure:$(C_{15}^3.A_4):C_4$
Core:$C_3^3$
Minimal over-subgroups:$C_{15}^3.C_{12}$$C_3^3:(S_3\times F_5)$
Maximal under-subgroups:$C_3\wr C_3\times D_5$$C_3^3:F_5$$\He_3:F_5$$C_3^3:C_{12}$

Other information

Number of subgroups in this autjugacy class$100$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$