Subgroup ($H$) information
Description: | $C_{15}\wr C_3:C_2$ |
Order: | \(20250\)\(\medspace = 2 \cdot 3^{4} \cdot 5^{3} \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
Generators: |
$b^{6}, d^{20}f^{10}, e^{3}f^{3}, f^{10}, d^{6}e^{9}, f^{3}, b^{4}cd^{3}e^{5}f^{13}, e^{10}f^{5}$
|
Derived length: | $2$ |
The subgroup is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.
Ambient group ($G$) information
Description: | $C_{15}^3.(C_4\times S_4)$ |
Order: | \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \) |
$\operatorname{Aut}(H)$ | $(C_5\times C_{15}).C_{15}.C_3.C_{12}^2.C_2^3$ |
$W$ | $C_{15}^2:(S_3\times F_5)$, of order \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_{15}^3.(C_4\times S_4)$ |