Properties

Label 324000.bm.16.b1
Order $ 2 \cdot 3^{4} \cdot 5^{3} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}\wr C_3:C_2$
Order: \(20250\)\(\medspace = 2 \cdot 3^{4} \cdot 5^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $b^{6}, d^{20}f^{10}, e^{3}f^{3}, f^{10}, d^{6}e^{9}, f^{3}, b^{4}cd^{3}e^{5}f^{13}, e^{10}f^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $(C_5\times C_{15}).C_{15}.C_3.C_{12}^2.C_2^3$
$W$$C_{15}^2:(S_3\times F_5)$, of order \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}\wr S_3:C_4$
Normal closure:$C_3^3:D_5\wr C_3$
Core:$C_3^3\times C_5^2:D_5$
Minimal over-subgroups:$C_3^3:D_5\wr C_3$$C_{15}\wr S_3:C_2$$C_{15}^3.C_{12}$$C_{15}\wr C_3:C_4$
Maximal under-subgroups:$C_{15}\wr C_3$$C_3^3\times C_5^2:D_5$$(C_5\times C_{15}^2):C_6$$(C_5\times C_{15}^2).C_6$$(C_3\times C_{15}^2):C_6$$C_3\wr C_3\times D_5$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$