Properties

Label 324000.bm.216.a1
Order $ 2^{2} \cdot 3 \cdot 5^{3} $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:D_5^2$
Order: \(1500\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{3} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $acd^{15}e^{11}f^{10}, f^{3}, d^{20}, d^{6}e^{12}, b^{6}, e^{3}f^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $(C_2\times C_5^2:C_4).S_5\times F_5$
$W$$D_5^2:F_5$, of order \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_5^3.(C_6\times S_3).C_2^2$
Normal closure:$C_3^3:D_5\wr S_3$
Core:$C_5^3:C_2$
Minimal over-subgroups:$C_3^2\times D_5\times C_5:D_5$$C_5^3:(C_6\times S_3)$$C_5^3:(C_2\times C_3:C_4)$$C_5^3:(C_2\times C_3:C_4)$$C_3\times C_5^3:C_2^3$
Maximal under-subgroups:$C_5^2:C_{30}$$C_5^3:C_6$$C_5^2:C_{30}$$C_5:D_5^2$$C_{15}:D_{10}$$C_3\times D_5^2$$C_3\times D_5^2$$C_3\times D_5^2$$C_3\times D_5^2$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$