Properties

Label 324000.bm.108.b1
Order $ 2^{3} \cdot 3 \cdot 5^{3} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(3000\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{3} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: not computed
Generators: $acd^{15}ef^{5}, e^{3}f^{3}, b^{6}, d^{20}, b^{3}, f^{3}, d^{6}e^{12}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(6000\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^3.C_6.C_2^3$
Normal closure:$C_{15}^3.(C_4\times S_4)$
Core:$C_5^3:C_2$
Minimal over-subgroups:$C_5^3.C_6^2.C_2$$C_5^3.(C_6\times S_3).C_2$$C_5^3.C_6.C_2^3$
Maximal under-subgroups:$C_{15}:D_5^2$$(C_5\times C_{15}):F_5$$(C_5\times C_{15}):F_5$$C_5^3:(C_2\times C_4)$$C_{30}:F_5$$D_5^2.S_3$$D_5^2.S_3$$D_5^2.S_3$$D_5^2.S_3$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$