Properties

Label 324000.bm.2.a1
Order $ 2^{4} \cdot 3^{4} \cdot 5^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:D_5\wr S_3$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Index: \(2\)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $d^{6}, f^{3}, f^{10}, b^{6}, d^{20}e^{10}, cd^{9}e^{11}f^{13}, e^{10}f^{5}, a, b^{4}d^{15}e^{8}f^{7}, d^{15}e^{5}f^{4}, e^{3}f^{12}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$W$$C_{15}^3.(C_4\times S_4)$, of order \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^3.(C_4\times S_4)$
Minimal over-subgroups:$C_{15}^3.(C_4\times S_4)$
Maximal under-subgroups:$C_{15}^3.S_4$$C_3^3:D_5\wr C_3$$C_{15}^3.S_4$$C_{15}^3.C_4.C_2^2$$C_{15}\wr S_3:C_2$$D_5\wr S_3$$C_2\times C_3^3:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$