Properties

Label 324000.bm.20.a1
Order $ 2^{3} \cdot 3^{4} \cdot 5^{2} $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:C_6.D_6$
Order: \(16200\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{2} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $e^{3}f^{3}, d^{6}e^{3}f^{9}, b^{3}, d^{10}e^{10}f^{10}, b^{4}cd^{3}e^{5}f^{13}, d^{20}f^{10}, acd^{15}e^{11}f^{10}, b^{6}, f^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_{15}^2.C_3^2.C_{24}.C_2^2$
$W$$C_{15}^2:C_6.D_6$, of order \(16200\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^2:C_6.D_6$
Normal closure:$C_{15}^3.(C_4\times S_4)$
Core:$C_3^3$
Minimal over-subgroups:$C_{15}\wr S_3:C_4$
Maximal under-subgroups:$(C_3\times C_{15}^2):D_6$$(C_3\times C_{15}^2):C_{12}$$C_{15}^2:C_6.S_3$$C_{15}^2.C_6.C_2^2$$C_{15}^2:(C_4\times S_3)$$C_3^3:(C_4\times S_3)$

Other information

Number of subgroups in this autjugacy class$20$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$