Properties

Label 324000.bm.10800.t1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 2^{4} \cdot 3^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_5$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(10800\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $acd^{15}e^{11}f^{10}, e^{3}f^{3}, d^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_{15}^2:C_2^2$
Normalizer:$C_5^3.(C_6\times S_3).C_2^2$
Normal closure:$C_{15}^3.S_4$
Core:$C_1$
Minimal over-subgroups:$D_5\times C_{15}$$D_5\times C_{15}$$D_5\times C_{15}$$D_5\times C_{15}$$C_3^2\times D_5$$C_3\times D_{15}$$C_3\times D_{10}$$C_3\times D_{10}$$C_3\times D_{10}$
Maximal under-subgroups:$C_{15}$$D_5$$C_6$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$