Properties

Label 324000.bm.54000.a1
Order $ 2 \cdot 3 $
Index $ 2^{4} \cdot 3^{3} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $acd^{15}e^{11}f^{10}, d^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{15}^3.(C_4\times S_4)$
Order: \(324000\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{15}^2:C_2^3$
Normalizer:$C_{15}^2.C_2^2.C_2^2$
Normal closure:$C_{15}^3.S_4$
Core:$C_1$
Minimal over-subgroups:$C_{30}$$C_{30}$$C_{30}$$C_{30}$$C_3\times D_5$$C_3\times C_6$$C_3\times S_3$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this autjugacy class$90$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^3.(C_4\times S_4)$