Subgroup ($H$) information
| Description: | $C_3$ | 
| Order: | \(3\) | 
| Index: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) | 
| Exponent: | \(3\) | 
| Generators: | 
		
    $b$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_3\wr C_4$ | 
| Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_3^2:C_{12}$ | 
| Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Automorphism Group: | $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
| Outer Automorphisms: | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times F_9:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $C_3^2\wr C_2$ | |||||
| Normalizer: | $C_3\wr C_4$ | |||||
| Complements: | $C_3^2:C_{12}$ | |||||
| Minimal over-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_6$ | 
| Maximal under-subgroups: | $C_1$ | 
Other information
| Möbius function | $0$ | 
| Projective image | $C_3\wr C_4$ |