Properties

Label 324.162.2.a1.a1
Order $ 2 \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\wr C_2$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(2\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{6}, d, a^{4}, b, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3\wr C_4$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_9:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)\times \GL(2,3)$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_9:C_2^3$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3^2:C_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3\wr C_4$
Minimal over-subgroups:$C_3\wr C_4$
Maximal under-subgroups:$C_3^4$$C_3^2:C_6$$C_3^2:C_6$$S_3\times C_3^2$$S_3\times C_3^2$$C_3^2:C_6$

Other information

Möbius function$-1$
Projective image$C_3^3:C_4$