Subgroup ($H$) information
| Description: | $C_3^2:C_{12}$ |
| Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| Index: | \(3\) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a^{3}, d, a^{4}, a^{6}, cd$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_3\wr C_4$ |
| Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times F_9:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| $\operatorname{Aut}(H)$ | $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $\operatorname{res}(S)$ | $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $C_3^2:C_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
| Centralizer: | $C_3$ | ||
| Normalizer: | $C_3^2:C_{12}$ | ||
| Normal closure: | $C_3\wr C_4$ | ||
| Core: | $C_3^2:C_6$ | ||
| Minimal over-subgroups: | $C_3\wr C_4$ | ||
| Maximal under-subgroups: | $C_3^2:C_6$ | $C_3^2:C_4$ | $C_{12}$ |
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $-1$ |
| Projective image | $C_3^3:C_4$ |