Subgroup ($H$) information
Description: | $C_{199}:C_9$ |
Order: | \(1791\)\(\medspace = 3^{2} \cdot 199 \) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(1791\)\(\medspace = 3^{2} \cdot 199 \) |
Generators: |
$ab^{14}, a^{3}b^{1374}, b^{18}$
|
Derived length: | $2$ |
The subgroup is normal, a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.
Ambient group ($G$) information
Description: | $C_{1791}:C_{18}$ |
Order: | \(32238\)\(\medspace = 2 \cdot 3^{4} \cdot 199 \) |
Exponent: | \(3582\)\(\medspace = 2 \cdot 3^{2} \cdot 199 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.
Quotient group ($Q$) structure
Description: | $C_{18}$ |
Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Automorphism Group: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{1791}.C_{33}.C_6^2$ |
$\operatorname{Aut}(H)$ | $F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \) |
$W$ | $C_{199}:C_9$, of order \(1791\)\(\medspace = 3^{2} \cdot 199 \) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $C_{1791}:C_{18}$ |