Properties

Label 32238.a.1791.d1.e1
Order $ 2 \cdot 3^{2} $
Index $ 3^{2} \cdot 199 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{1791}, a, a^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{1791}:C_{18}$
Order: \(32238\)\(\medspace = 2 \cdot 3^{4} \cdot 199 \)
Exponent: \(3582\)\(\medspace = 2 \cdot 3^{2} \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1791}.C_{33}.C_6^2$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_9\times C_{18}$
Normalizer:$C_9\times C_{18}$
Normal closure:$C_{199}:C_{18}$
Core:$C_2$
Minimal over-subgroups:$C_{199}:C_{18}$$C_3\times C_{18}$
Maximal under-subgroups:$C_9$$C_6$
Autjugate subgroups:32238.a.1791.d1.a132238.a.1791.d1.b132238.a.1791.d1.c132238.a.1791.d1.d132238.a.1791.d1.f132238.a.1791.d1.g132238.a.1791.d1.h132238.a.1791.d1.i1

Other information

Number of subgroups in this conjugacy class$199$
Möbius function$0$
Projective image$C_{1791}:C_9$