Properties

Label 32238.a.5373.b1.b1
Order $ 2 \cdot 3 $
Index $ 3^{3} \cdot 199 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(5373\)\(\medspace = 3^{3} \cdot 199 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{1791}, a^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{1791}:C_{18}$
Order: \(32238\)\(\medspace = 2 \cdot 3^{4} \cdot 199 \)
Exponent: \(3582\)\(\medspace = 2 \cdot 3^{2} \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1791}.C_{33}.C_6^2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_9\times C_{18}$
Normalizer:$C_9\times C_{18}$
Normal closure:$C_{199}:C_6$
Core:$C_2$
Minimal over-subgroups:$C_{199}:C_6$$C_3\times C_6$$C_{18}$$C_{18}$$C_{18}$
Maximal under-subgroups:$C_3$$C_2$
Autjugate subgroups:32238.a.5373.b1.a132238.a.5373.b1.c1

Other information

Number of subgroups in this conjugacy class$199$
Möbius function$0$
Projective image$C_{1791}:C_9$