Properties

Label 32238.a.1791.a1.a1
Order $ 2 \cdot 3^{2} $
Index $ 3^{2} \cdot 199 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{1791}, b^{398}, b^{1194}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, and cyclic (hence elementary ($p = 2,3$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_{1791}:C_{18}$
Order: \(32238\)\(\medspace = 2 \cdot 3^{4} \cdot 199 \)
Exponent: \(3582\)\(\medspace = 2 \cdot 3^{2} \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{199}:C_9$
Order: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Exponent: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Automorphism Group: $F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Outer Automorphisms: $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1791}.C_{33}.C_6^2$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{1791}:C_{18}$
Normalizer:$C_{1791}:C_{18}$
Complements:$C_{199}:C_9$ $C_{199}:C_9$ $C_{199}:C_9$ $C_{199}:C_9$ $C_{199}:C_9$ $C_{199}:C_9$ $C_{199}:C_9$ $C_{199}:C_9$ $C_{199}:C_9$
Minimal over-subgroups:$C_{3582}$$C_3\times C_{18}$
Maximal under-subgroups:$C_9$$C_6$

Other information

Möbius function$0$
Projective image$C_{199}:C_9$