Subgroup ($H$) information
Description: | $C_4\times C_{20}$ |
Order: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Generators: |
$b^{6}c^{5}, c^{4}, b^{4}c^{10}, c^{5}, c^{10}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{20}.D_8$ |
Order: | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5:(C_2\times C_4\times C_2^2.C_2^5)$ |
$\operatorname{Aut}(H)$ | $C_4\times \GL(2,\mathbb{Z}/4)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
$W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
Möbius function | $2$ |
Projective image | $C_{10}.D_4$ |