Properties

Label 3160680600.a.1.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\PSL(2,1849)$
Order: \(3160680600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
Index: $1$
Exponent: \(36752100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43 \)
Generators: $\left[ \left(\begin{array}{rr} 1 & -1 \\ -1 & 1847 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 924 & 0 \\ 924 & -1 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $0$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, and simple (hence nonsolvable, perfect, quasisimple, and almost simple). Whether it is a direct factor has not been computed.

Ambient group ($G$) information

Description: $\PSL(2,1849)$
Order: \(3160680600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
Exponent: \(36752100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12642722400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
$\operatorname{Aut}(H)$ Group of order \(12642722400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed