Properties

Label 3160680600.a
Order \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
Exponent \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $1850$
Trans deg. $1850$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := PSL(2, 1849);
 
Copy content gap:G := PSL(2, 1849);
 
Copy content sage:G = PSL(2, 1849)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$\PSL(2,1849)$
Order: \(3160680600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36752100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(12642722400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 37 \cdot 43^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$\PSL(2,1849)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 11 12 14 21 22 25 28 33 37 42 43 44 66 77 84 132 154 185 231 308 462 924 925
Elements 1 1710325 3420650 3420650 6833904 3420650 10261950 17103250 6841300 10261950 20523900 17103250 34169520 20523900 34206500 61505136 20523900 3418800 34206500 34206500 102619500 41047800 68413000 102619500 246020544 205239000 205239000 205239000 410478000 1230102720 3160680600
Conjugacy classes   1 1 1 1 2 1 3 5 2 3 6 5 10 6 10 18 6 2 10 10 30 12 20 30 72 60 60 60 120 360 927
Divisions 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 31
Autjugacy classes 1 1 1 1 1 1 3 5 1 3 6 5 5 3 5 9 6 1 10 5 15 6 10 15 36 30 30 30 60 180 485

Minimal presentations

Permutation degree:$1850$
Transitive degree:$1850$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 925 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\PSL(2,1849)$, $\PSU(2,1849)$, $\Omega(3,1849)$, $\OmegaMinus(4,43)$, $\POmega(3,1849)$, $\POmegaMinus(4,43)$
Permutation group:Degree $1850$ $\langle(3,1599,976,371,163,1149,751,617,1464,983,398,369,712,370,246,835,1073,1479,1392,889,1175,449,1248,427,768,86,1089,404,71,1427,1213,1622,101,867,211,718,1746,812,177,646,1678,1299,1684,1101,796,85,214,480,990,507,739,1832,714,803,1082,1025,1047,801,668,357,1811,1714,446,1569,151,1217,1147,1508,627,15,612,1302,255,1582,30,1168,562,1814,1751,131,355,150,587,1385,467,969,1121,1769,729,928,281,630,1534,821,206,516,1773,1336,56,115,1480,880,1580,1242,1661,1828,1658,421,1250,1557,1058,1158,298,65,1630,836,1078,623,552,1246,956,1573,1612,735,859,1344,989,100,406,395,1081,1665,1394,1409,661,873,1070,665,1556,1466,692,1524,1231,950,38,327,831,1307,982,165,72,1251,1187,833,294,900,1145,51,413,217,360,1764,738,790,260,1600,844,249,388,305,1294,1671,1013,1539,1650,282,526,1490,759,381,1563,70,664,875,1319,1748,1786,1597,1574,199,1536,1616,46,784,887,1408,1331,354,225,1295,1743,1796,881,506,1813,593,452,486,143,794,17,1652,955,1519,705,724,1694,1224,1170,109,1328,529,585,1091,1716,696,1263,845,1035,1015,841,1297,1843,910,655,1435,1611,432,800,934,29,1210,1673,1273,1042,1613,311,93,648,487,1174,478,1750,366,472,342,451,1119,804,688,1126,1656,1360,1092,181,1804,1120,645,570,1816,227,382,805,601,674,1762,168,1203,194,604,1339,548,134,1845,1430,232,1735,1315,1068,1096,830,1003,1837,1686,1335,5,1031,1016,306,654,420,1619,1579,48,1771,1627,778,1434,1275,128,403,64,458,415,412,659,1540,295,288,1633,1310,1844,1040,637,753,827,157,1544,222,1270,1756,998,1083,53,1798,104,1111,1554,261,663,625,1051,457,899,890,1834,154,149,937,968,1244,1525,606,239,135,1271,895,1522,379,1729,1692,59,1790,566,263,385,1308,1799,924,896,528,975,1660,1136,1629,913,624,949,709,1355,1503,1538,450,1351,1413,1400,633,1663,270,1494,523,1810,1106,1689,854,133,392,1389,1801,1332,519,791,608,1342,1098,122,340,1518,1014,581,1491,1507,1338,647,437,431,746,565,471,615,861,829,691,1056,1361,1589,865,24,888,1728,1608,1406,905,561,687,1021,1847,1281,874,1255,1378,1776,599,1545,410,1005,1514,524,946,701,132,941,750,1566,1306,148,817,503,933,36,906,411,98,1546,1609,820,1625,1584,278,1780,758,310,45,1221,1509,711,349,914,1163,1602,1646,1276,1818,1384,720,1034,1159,1286,1452,291,1489,533,336,12,1640,745,361,1219,1116,721,1717,1019,1138,81,321,592,173,1643,702,496,788,774,1527,952,1345,823,553,333,716,1578,1669,1588,1473,1581,959,1410,465,1470,1234,1352,1742,684,1411,542,1284,944,1425,400,782,915,127,429,1737,1552,378,216,1825,1521,1623,1072,119,995,930,1420,1399,1093,1419,935,1833,1641,807,289,347,1682,1624,158,1379,600,932,586,1651,574,460,1214,676,120,1398,626,1826,1777,394,856,1007,204,473,1156,1679,156,1369,499,591,384,482,1758,927,1105,1793,303,942,1353,1784,41,1456,631,186,960,1551,984,405,304,416,348,47,902,477,1664,707,1706,1530,1830,330,1567,1730,981,74,945,1150,152,113,996,922,849,351,614,488,1429,776,196,596,1711,504,1232,725,425,842,851,435,974,252,677,1691,710,628,88,635,300,699,1193,1715,90,476,769,153,967,700,1298,826,1632,527,1045,18,1820,1638,1343,961,537,1296,1140,343,1596,1512,1741,1134,726,1446,1436,987,1537,1235,356,1303,1587,187,1006,756,283,479,540,653,917,862,575,292,396,1383,1670,589,743,1215,1060,1488,414,96,1634,1476,1677,1123,1827,4,649,1529,824,1675,68,571,1775,1258,852,1155,584,1237,1732,882,1054,1603,843,1197,1099,686,337,1180,218,358,145,658,1391,1787,594,1681,853,1341,1535,185,438,1610,1541,1293,1644,1256,114,1277,1761,642,108,267,1674,399,205,408,1747,1560,1196,1117,825,505,1265,129,1467,236,259,1698,669,573,375,1481,1321,7,670,276,765,140,141,1363,1431,814,94,675,99,1212,1112,1182,61,248,448,815,463,1423,568,1186,483,1090,1131,402,456,1462,1061,1240,1173,1839,1693,247,126,787,1387,1778,393,1201,1359,682,1595,1333,1774,497,485,1842,530,579,993,1463,1822,651,1662,200,1486,338,1585,1364,146,481,58,130,662,44,1358,1109,539,876,1074,1125,325,985,13,749,1209,1290,1736,786,1645,170,1172,436,513,1064,322,962,1477,777,549,1501,1533,620,1709,1591,1043,1687,409,1130,809,50,672,1485,238,1568,731,1309,1037,1821,1113,235,1412,798,1576,491,1791,883,1087,1620,83,1243,1086,353,1160,87,1289,773,1831,1414,198,536,34,535,1164,531,1312) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 1850 | (3,1599,976,371,163,1149,751,617,1464,983,398,369,712,370,246,835,1073,1479,1392,889,1175,449,1248,427,768,86,1089,404,71,1427,1213,1622,101,867,211,718,1746,812,177,646,1678,1299,1684,1101,796,85,214,480,990,507,739,1832,714,803,1082,1025,1047,801,668,357,1811,1714,446,1569,151,1217,1147,1508,627,15,612,1302,255,1582,30,1168,562,1814,1751,131,355,150,587,1385,467,969,1121,1769,729,928,281,630,1534,821,206,516,1773,1336,56,115,1480,880,1580,1242,1661,1828,1658,421,1250,1557,1058,1158,298,65,1630,836,1078,623,552,1246,956,1573,1612,735,859,1344,989,100,406,395,1081,1665,1394,1409,661,873,1070,665,1556,1466,692,1524,1231,950,38,327,831,1307,982,165,72,1251,1187,833,294,900,1145,51,413,217,360,1764,738,790,260,1600,844,249,388,305,1294,1671,1013,1539,1650,282,526,1490,759,381,1563,70,664,875,1319,1748,1786,1597,1574,199,1536,1616,46,784,887,1408,1331,354,225,1295,1743,1796,881,506,1813,593,452,486,143,794,17,1652,955,1519,705,724,1694,1224,1170,109,1328,529,585,1091,1716,696,1263,845,1035,1015,841,1297,1843,910,655,1435,1611,432,800,934,29,1210,1673,1273,1042,1613,311,93,648,487,1174,478,1750,366,472,342,451,1119,804,688,1126,1656,1360,1092,181,1804,1120,645,570,1816,227,382,805,601,674,1762,168,1203,194,604,1339,548,134,1845,1430,232,1735,1315,1068,1096,830,1003,1837,1686,1335,5,1031,1016,306,654,420,1619,1579,48,1771,1627,778,1434,1275,128,403,64,458,415,412,659,1540,295,288,1633,1310,1844,1040,637,753,827,157,1544,222,1270,1756,998,1083,53,1798,104,1111,1554,261,663,625,1051,457,899,890,1834,154,149,937,968,1244,1525,606,239,135,1271,895,1522,379,1729,1692,59,1790,566,263,385,1308,1799,924,896,528,975,1660,1136,1629,913,624,949,709,1355,1503,1538,450,1351,1413,1400,633,1663,270,1494,523,1810,1106,1689,854,133,392,1389,1801,1332,519,791,608,1342,1098,122,340,1518,1014,581,1491,1507,1338,647,437,431,746,565,471,615,861,829,691,1056,1361,1589,865,24,888,1728,1608,1406,905,561,687,1021,1847,1281,874,1255,1378,1776,599,1545,410,1005,1514,524,946,701,132,941,750,1566,1306,148,817,503,933,36,906,411,98,1546,1609,820,1625,1584,278,1780,758,310,45,1221,1509,711,349,914,1163,1602,1646,1276,1818,1384,720,1034,1159,1286,1452,291,1489,533,336,12,1640,745,361,1219,1116,721,1717,1019,1138,81,321,592,173,1643,702,496,788,774,1527,952,1345,823,553,333,716,1578,1669,1588,1473,1581,959,1410,465,1470,1234,1352,1742,684,1411,542,1284,944,1425,400,782,915,127,429,1737,1552,378,216,1825,1521,1623,1072,119,995,930,1420,1399,1093,1419,935,1833,1641,807,289,347,1682,1624,158,1379,600,932,586,1651,574,460,1214,676,120,1398,626,1826,1777,394,856,1007,204,473,1156,1679,156,1369,499,591,384,482,1758,927,1105,1793,303,942,1353,1784,41,1456,631,186,960,1551,984,405,304,416,348,47,902,477,1664,707,1706,1530,1830,330,1567,1730,981,74,945,1150,152,113,996,922,849,351,614,488,1429,776,196,596,1711,504,1232,725,425,842,851,435,974,252,677,1691,710,628,88,635,300,699,1193,1715,90,476,769,153,967,700,1298,826,1632,527,1045,18,1820,1638,1343,961,537,1296,1140,343,1596,1512,1741,1134,726,1446,1436,987,1537,1235,356,1303,1587,187,1006,756,283,479,540,653,917,862,575,292,396,1383,1670,589,743,1215,1060,1488,414,96,1634,1476,1677,1123,1827,4,649,1529,824,1675,68,571,1775,1258,852,1155,584,1237,1732,882,1054,1603,843,1197,1099,686,337,1180,218,358,145,658,1391,1787,594,1681,853,1341,1535,185,438,1610,1541,1293,1644,1256,114,1277,1761,642,108,267,1674,399,205,408,1747,1560,1196,1117,825,505,1265,129,1467,236,259,1698,669,573,375,1481,1321,7,670,276,765,140,141,1363,1431,814,94,675,99,1212,1112,1182,61,248,448,815,463,1423,568,1186,483,1090,1131,402,456,1462,1061,1240,1173,1839,1693,247,126,787,1387,1778,393,1201,1359,682,1595,1333,1774,497,485,1842,530,579,993,1463,1822,651,1662,200,1486,338,1585,1364,146,481,58,130,662,44,1358,1109,539,876,1074,1125,325,985,13,749,1209,1290,1736,786,1645,170,1172,436,513,1064,322,962,1477,777,549,1501,1533,620,1709,1591,1043,1687,409,1130,809,50,672,1485,238,1568,731,1309,1037,1821,1113,235,1412,798,1576,491,1791,883,1087,1620,83,1243,1086,353,1160,87,1289,773,1831,1414,198,536,34,535,1164,531,1312)(6,832,1166,1292,948,447,245,125,965,1829,988,264,492,797,1162,1024,992,1238,1382,1288,1107,1422,1416,1206,515,346,362,1272,839,335,1513,1731,755,511,1245,1062,1334,521,52,464,1461,1720,999,164,747,43,1330,359,1583,190,1220,453,440,502,1403,315,350,498,1144,904,1229,940,224,717,193,878,1325,957,929,54,545,1468,1590,1287,63,1794,161,124,1474,331,958,582,1718,1614,1247,328,609,885,916,1704,1699,19,963,954,1396,802,1228,1190,1592,299,742,1749,55,1800,770,855,97,583,1631,309,1696,1026,1100,1216,813,9,543,220,1565,1558,313,1194,1441,1438,1395,1789,1450,1725,578,419,1075,226,82,1805,274,234,1433,1199,1547,837,822,1848,518,167,16,850,1023,757,785,538,118,1621,423,8,1719,1305,514,1249,1659,650,1685,91,1179,1252,1048,1471,1626,37,1283,1208,733,49,1672,761,493,197,727,1165,1049,734,1402,1511,1381,1487,103,1375,679,1366,1205,1760,1542,240,811,580,180,643,1824,919,1053,1421,242,418,1198,943,10,556,1012,838,818,1008,590,1157,137,762,1268,1324,525,1744,683,629,159,1129,1148,334,898,201,1836,1059,1710,1367,1401,1260,40,1347,972,57,110,558,1628,1499,522,445,966,1069,1807,237,317,1654,279,256,67,105,534,978,1189,1783,290,1472,1094,363,1327,1571,203,314,840,182,559,1548,1465,1604,1009,253,1593,1063,1115,89,1493,1636,1440,1802,708,953,1559,1020,666,602,1781,1688,871,546,1022,1526,1815,903,622,329,1161,387,297,1188,783,980,1192,444,459,188,772,1458,1447,1753,864,509,994,1118,241,280,897,607,1301,1230,775,1017,223,1788,1555,695,795,296,603,1432,195,25,192,611,273,973,373,1738,1797,517,80,1337,1647,1032,319,1223,1572,925,1124,84,732,884,1386,468,1266,1703,1498,1722,102,39,1291,685,1823,271,1598,551,1241,1838,1226,345,706,636,1702,284,1407,139,42,1496,1185,1052,806,828,771,1050,1139,21,1114,1346,863,1373,1639,1768,1057,752,169,554,175,1207,1676,1041,107,1135,1642,986,1752,231,640,426,1782,1449,764,1767,1085,1426,605,1404,678,964,461,374,780,1018,1607,1483,1141,1484,1455,870,389,1236,1102,704,1690,1482,877,254,1850,541,1322,689,1318,1819,1317,1655,439,22,1080,564,1766,693,1500,767,610,1770,233,766,970,62,1362,277,1055,441,1618,740,32,816,544,1122,285,1615,368,1181,1803,1044,723,1444,166,810,262,144,1233,320,352,1304,1076,376,891,1531,789,1340,1417,681,1683,208,1067,117,563,644,1104,1840,868,1528,728,779,977,1314,744,495,1809,1191,1723,1795,1372,1707,489,268,1515,367,1653,191,1202,31,390,860,1274,1323,11,1368,1356,79,520,258,1171,494,652,1460,75,466,1066,1727,1606,160,14,680,613,792,391,1397,1451,722,763,1370,667,1285,430,1390,1038,1405,1605,1792,671,741,641,1754,1178,1759,1039,422,490,1712,1713,1088,1577,1183,1846,532,372,1478,1280,1184,155,1594,1617,386,1724,588,1348,1028,736,657,293,106,1445,1648,1454,179,1586,1745,1211,92,576,1739,597,209,560,312,243,1415,1668,318,512,1000,172,1259,66,462,1195,1708,1495,1635,673,1516,1167,754,656,1010,250,799,971,121,616,1269,698,1001,595,78,1282,1785,178,1029,324,1204,1849,26,730,176,377,219,1757,1439,365,793,638,1110,1264,183,470,1457,1561,1278,991,936,1200,1313,1374,1570,1097,847,1666,266,550,1497,618,316,866,417,407,1127,719,112,341,257,1510,713,557,1316,892,510,215,33,1835,808,1326,221,1027,555,1153,886,1700,1084,1377,1763,138,660,1154,1553,1218,1765,1225,1143,162,1176,1601,879,1418,1002,1011,1428,1128,621,1349,142,1257,1657,1077,424,1365,1239,1502,1004,931,857,1740,1701,703,908,1779,872,123,286,1523,23,323,147,1146,189,1376,951,1806,1505,1437,1549,1448,869,302,893,1667,1222,397,1812,69,500,911,1550,60,748,926,95,1371,1469,1262,1354,484,1697,174,697,1380,1649,846,997,1459,76,27,1227,455,1733,1177,639,1393,1279,202,1267,921,1253,474,1695,229,171,1506,1564,1046,212,20,918,434,760,454,433,923,858,1734,781,230,332,28,1637,1475,301,116,1424,1726,938,1071,1453,428,909,569,1311,442,1169,111,501,619,383,1388,443,894,272,380,265,184,275,1137,1520,1300,1030,508,901,326,1079,1065,1357,1151,210,1680,1261,1532,1772,715,834,136,1132,737,634,1492,1108,213,1841,1517,1320,364,1562,401,567,694,819,1133,469,35,577,207,251,690,939,1504,1142,344,632,1808,1543,1095,73,1575,269,228,1033,244,307,1755,1442,947,1817,920,1350,1036,1705,547,287,1103,912,1721,1152,907,1329,339,848,1443,308,1254,77,475,598,979,572), (1,1460,2)(3,984,240)(4,1163,11)(5,12,988)(6,139,1371)(7,1175,1443)(8,1678,960)(9,155,1766)(10,951,811)(13,166,1400)(14,1004,229)(15,1212,1261)(16,75,740)(17,533,1190)(18,1180,994)(19,1684,1298)(20,1586,266)(21,337,942)(22,999,470)(23,1271,1150)(24,1227,1527)(25,576,137)(26,290,1807)(27,1700,1028)(28,870,569)(29,1793,344)(30,584,77)(31,1594,1720)(32,362,1110)(34,523,1426)(35,1788,213)(36,485,1102)(37,332,1252)(38,206,671)(39,335,893)(40,930,246)(41,1397,676)(42,1051,150)(43,993,651)(44,110,488)(45,683,1250)(46,1493,1756)(47,1029,310)(48,568,172)(49,144,208)(50,1760,851)(51,487,1057)(52,184,182)(53,532,1462)(54,1632,446)(55,866,1838)(56,1354,1358)(57,1325,1137)(58,325,1162)(59,608,1062)(60,1643,941)(61,1848,1698)(62,238,1629)(63,1737,664)(64,1293,183)(65,472,704)(66,86,217)(67,296,1039)(68,1063,1258)(69,1141,939)(70,926,1265)(71,1083,1322)(72,1602,1208)(73,264,445)(74,1622,167)(76,1651,975)(78,1078,480)(79,516,1650)(80,1012,1745)(81,513,1124)(82,140,1182)(83,406,510)(84,1055,273)(85,1155,346)(87,1074,469)(88,165,475)(89,1541,187)(90,1381,1709)(91,256,1701)(92,1563,889)(93,617,613)(94,1834,1617)(95,983,1248)(96,1368,1384)(97,312,1690)(98,919,1466)(99,630,1388)(100,353,1316)(101,1080,1310)(102,1771,1070)(103,395,1034)(104,1237,1457)(105,1419,1831)(106,1442,1478)(107,1191,972)(108,1412,1229)(109,223,1119)(111,1173,1168)(112,559,1053)(113,1687,590)(114,686,201)(115,528,1432)(116,861,720)(117,1106,530)(118,1398,255)(119,646,1008)(120,1817,311)(121,786,845)(122,656,1006)(123,322,1158)(124,967,668)(125,176,681)(126,1118,1369)(127,627,1542)(128,143,953)(129,192,477)(130,1307,424)(131,1049,429)(132,1267,1276)(133,474,542)(134,507,1122)(135,900,546)(136,1674,1336)(138,1576,1246)(141,1850,745)(142,1779,512)(145,614,1572)(146,575,493)(147,1726,977)(148,566,1036)(149,1573,195)(151,326,1090)(152,675,1188)(153,1185,1134)(154,214,640)(156,1441,928)(157,389,796)(158,212,895)(159,479,1423)(160,995,922)(161,1220,954)(162,199,1387)(163,321,1022)(164,1659,1382)(168,1019,1422)(169,1653,1260)(170,661,1349)(171,976,1312)(173,278,1806)(174,935,1810)(175,747,660)(177,1243,1380)(178,816,1461)(179,1489,196)(180,685,736)(181,1038,491)(185,1314,820)(186,709,1523)(188,226,1765)(189,1069,1305)(190,655,823)(191,881,1814)(193,1744,737)(194,596,454)(197,974,798)(198,543,356)(200,691,1362)(202,997,1104)(203,914,357)(204,1828,1696)(205,739,1705)(207,1193,1748)(209,1296,1545)(210,1718,818)(211,365,1630)(215,742,1703)(216,1181,589)(218,1537,622)(219,1207,299)(220,1176,280)(221,647,707)(222,347,619)(224,1685,598)(225,1515,467)(227,1626,1790)(228,1234,420)(230,1635,1282)(231,762,1323)(232,1145,1722)(233,1217,604)(234,734,1169)(235,1540,1809)(236,585,1257)(237,937,593)(239,1174,643)(241,1035,451)(242,514,639)(243,964,313)(244,768,248)(245,1072,1273)(247,716,1139)(249,924,314)(250,1301,1421)(251,1761,355)(252,1581,1370)(253,802,1649)(254,343,304)(257,1494,628)(258,884,1571)(259,1657,1328)(260,1200,1821)(261,1837,1283)(262,876,270)(263,1026,637)(265,667,407)(267,450,372)(268,1774,624)(269,425,1786)(271,1024,748)(272,1530,645)(274,1796,1546)(275,1832,1333)(276,625,1454)(277,831,784)(279,1236,544)(281,1612,1348)(282,1132,987)(283,911,1804)(284,936,309)(285,836,724)(286,715,368)(287,1472,1350)(288,1403,865)(289,438,1782)(291,478,1144)(292,1841,833)(293,813,689)(294,1032,1619)(295,713,1675)(297,1096,1652)(298,982,1066)(300,1791,1048)(301,1640,1507)(302,749,1658)(303,358,1050)(305,1424,1603)(306,1519,1688)(307,898,1416)(308,956,1436)(315,1811,726)(316,1483,359)(317,1475,582)(318,663,505)(319,387,728)(320,1391,361)(323,1464,990)(324,1240,1120)(327,1084,1501)(328,844,1521)(329,808,1249)(330,1231,1334)(331,1605,744)(333,746,1279)(334,1003,1430)(336,1668,1730)(338,827,1285)(339,364,1020)(340,1825,1262)(341,1206,1318)(342,494,398)(345,782,1061)(348,780,1587)(349,932,719)(350,442,363)(351,455,778)(352,1143,1133)(354,727,1589)(360,896,1604)(366,1706,1151)(367,519,463)(369,1752,1351)(370,1673,680)(371,1346,1014)(373,751,817)(374,810,1654)(375,1819,1116)(376,825,1609)(377,864,1366)(378,962,459)(379,908,996)(380,414,1539)(381,1633,783)(382,702,1288)(383,570,1567)(384,669,732)(385,1197,1516)(386,696,773)(388,1161,1798)(390,1156,1664)(391,1712,839)(392,1637,774)(393,1396,448)(394,1196,636)(396,1123,444)(397,1086,1025)(399,1580,1680)(400,1584,1128)(401,434,1768)(402,1749,483)(403,1154,1215)(404,1235,1614)(405,1820,1655)(408,1808,1147)(409,1067,899)(410,1676,620)(411,594,489)(412,1297,978)(413,1315,468)(415,1079,807)(416,597,788)(417,1588,465)(418,1753,1001)(419,511,498)(421,1347,933)(422,1263,1149)(423,572,929)(426,1136,1392)(427,460,943)(428,878,1189)(430,1470,1232)(431,1479,1241)(432,1662,730)(433,1522,1833)(435,1319,1575)(436,592,925)(437,1404,731)(439,1562,1448)(440,1778,1364)(441,1477,633)(443,1710,958)(447,481,1172)(449,1733,1414)(452,1812,1644)(453,1564,903)(456,1056,891)(457,1097,1476)(458,1496,1557)(461,1583,1127)(462,1031,1131)(464,1686,1625)(466,758,1677)(471,1047,1555)(473,913,1550)(476,1195,1514)(482,1715,1803)(484,1345,1847)(486,1595,892)(490,1697,1365)(492,1360,959)(495,1560,1005)(496,650,1081)(497,522,1691)(499,829,1601)(500,1320,541)(501,1107,1815)(502,1228,545)(503,558,1661)(504,1797,658)(506,950,610)(508,761,1395)(509,1578,1568)(515,1556,776)(517,918,832)(518,607,557)(520,1393,1505)(521,1449,886)(524,840,1769)(525,981,1043)(526,822,1818)(527,1281,1708)(529,824,1459)(531,1377,1480)(534,1210,1627)(535,710,1621)(536,803,1549)(537,1591,1471)(538,1721,1247)(539,738,1553)(540,698,1689)(547,1787,612)(548,1747,618)(549,764,1021)(550,894,741)(551,1682,814)(552,1775,577)(553,1275,1755)(554,1295,1813)(555,1023,1192)(556,1108,1287)(560,1204,1071)(561,1663,920)(562,1504,642)(563,1645,1729)(564,1059,1615)(565,794,1672)(567,1092,1679)(571,835,904)(573,1846,1308)(574,1361,1239)(578,907,1800)(579,1724,1579)(580,1363,1099)(581,1535,641)(583,688,905)(586,1378,879)(587,1165,915)(588,1656,777)(591,1835,599)(595,1125,841)(600,1428,874)(601,890,1511)(602,1383,1054)(603,1140,1827)(605,770,1010)(606,1313,743)(609,1341,1130)(611,1290,1410)(615,1781,821)(616,1438,1639)(621,1727,858)(623,799,1082)(626,902,1171)(629,989,1566)(631,1429,1076)(632,1707,847)(634,921,1085)(635,673,946)(638,752,1592)(644,775,795)(648,923,826)(649,703,1816)(652,1166,1415)(653,717,812)(654,963,1518)(657,1015,883)(659,1607,1714)(662,699,1324)(665,1222,682)(666,1138,712)(670,897,1830)(672,1406,1642)(674,1170,772)(677,809,679)(678,1418,797)(684,1331,1468)(687,901,1776)(690,1399,1735)(692,1451,1058)(693,1289,1692)(694,1089,787)(695,848,1311)(697,1329,1052)(700,1757,1491)(701,1789,1716)(705,1783,1270)(706,852,945)(708,1577,1526)(711,1660,819)(714,1734,985)(718,733,1758)(721,779,1529)(722,855,1340)(723,1465,1135)(725,1375,1037)(729,1435,1444)(735,1342,1593)(750,1543,1538)(753,1482,1299)(754,1739,1520)(755,1233,1269)(756,880,1292)(757,1254,1474)(759,1641,940)(760,1401,1631)(763,1245,1792)(765,1327,1343)(766,1463,1728)(767,1094,877)(769,1822,1148)(771,1002,1330)(781,966,1699)(785,1736,1060)(789,1503,1109)(790,1389,1628)(791,1446,1785)(792,1772,1570)(793,1453,1648)(800,1013,863)(801,1770,1068)(804,1574,1386)(805,1353,1357)(806,873,1845)(815,955,1218)(830,991,1117)(834,1683,1011)(837,1184,1484)(838,1561,1440)(842,1413,1027)(843,1717,1531)(846,1450,1499)(849,856,1723)(850,1548,857)(853,1751,1033)(854,1268,1536)(859,1251,860)(862,970,1379)(867,1309,1695)(868,1278,1103)(869,948,1114)(871,1304,1702)(872,1743,1321)(875,1590,1552)(882,1746,1513)(885,1488,1599)(887,1794,1352)(888,1098,1095)(906,1447,1213)(909,1669,949)(910,1242,1618)(912,1738,938)(916,1509,1611)(917,1824,1359)(927,1490,1272)(931,1044,1492)(934,1300,1711)(944,1532,998)(947,1303,1394)(952,1585,1598)(957,1178,1372)(961,1367,1693)(965,1829,1198)(968,1839,1390)(969,1087,1740)(971,1624,1742)(973,1799,1773)(979,1073,1481)(980,1294,1544)(986,1405,1487)(992,1502,1041)(1000,1411,1777)(1007,1473,1495)(1009,1407,1840)(1016,1402,1844)(1017,1559,1606)(1018,1344,1750)(1030,1160,1485)(1040,1456,1506)(1042,1802,1762)(1045,1434,1376)(1046,1088,1153)(1064,1214,1636)(1065,1486,1427)(1075,1497,1647)(1077,1534,1620)(1091,1177,1634)(1093,1469,1801)(1100,1202,1795)(1101,1326,1569)(1105,1152,1694)(1111,1373,1582)(1112,1223,1826)(1113,1126,1759)(1115,1337,1356)(1121,1836,1159)(1129,1338,1600)(1142,1385,1610)(1146,1437,1183)(1157,1266,1280)(1164,1512,1194)(1167,1417,1731)(1179,1767,1713)(1186,1452,1455)(1187,1467,1253)(1199,1547,1517)(1201,1425,1291)(1203,1500,1302)(1205,1255,1671)(1209,1719,1670)(1211,1508,1409)(1216,1238,1704)(1219,1667,1780)(1221,1784,1439)(1224,1306,1725)(1225,1646,1284)(1226,1551,1681)(1230,1638,1732)(1244,1524,1458)(1256,1259,1525)(1264,1805,1498)(1274,1565,1528)(1277,1666,1335)(1286,1510,1420)(1317,1408,1764)(1332,1741,1849)(1339,1533,1754)(1355,1374,1596)(1431,1445,1554)(1433,1843,1608)(1558,1623,1665)(1597,1763,1842)(1613,1823,1616) >;
 
Copy content gap:G := Group( (3,1599,976,371,163,1149,751,617,1464,983,398,369,712,370,246,835,1073,1479,1392,889,1175,449,1248,427,768,86,1089,404,71,1427,1213,1622,101,867,211,718,1746,812,177,646,1678,1299,1684,1101,796,85,214,480,990,507,739,1832,714,803,1082,1025,1047,801,668,357,1811,1714,446,1569,151,1217,1147,1508,627,15,612,1302,255,1582,30,1168,562,1814,1751,131,355,150,587,1385,467,969,1121,1769,729,928,281,630,1534,821,206,516,1773,1336,56,115,1480,880,1580,1242,1661,1828,1658,421,1250,1557,1058,1158,298,65,1630,836,1078,623,552,1246,956,1573,1612,735,859,1344,989,100,406,395,1081,1665,1394,1409,661,873,1070,665,1556,1466,692,1524,1231,950,38,327,831,1307,982,165,72,1251,1187,833,294,900,1145,51,413,217,360,1764,738,790,260,1600,844,249,388,305,1294,1671,1013,1539,1650,282,526,1490,759,381,1563,70,664,875,1319,1748,1786,1597,1574,199,1536,1616,46,784,887,1408,1331,354,225,1295,1743,1796,881,506,1813,593,452,486,143,794,17,1652,955,1519,705,724,1694,1224,1170,109,1328,529,585,1091,1716,696,1263,845,1035,1015,841,1297,1843,910,655,1435,1611,432,800,934,29,1210,1673,1273,1042,1613,311,93,648,487,1174,478,1750,366,472,342,451,1119,804,688,1126,1656,1360,1092,181,1804,1120,645,570,1816,227,382,805,601,674,1762,168,1203,194,604,1339,548,134,1845,1430,232,1735,1315,1068,1096,830,1003,1837,1686,1335,5,1031,1016,306,654,420,1619,1579,48,1771,1627,778,1434,1275,128,403,64,458,415,412,659,1540,295,288,1633,1310,1844,1040,637,753,827,157,1544,222,1270,1756,998,1083,53,1798,104,1111,1554,261,663,625,1051,457,899,890,1834,154,149,937,968,1244,1525,606,239,135,1271,895,1522,379,1729,1692,59,1790,566,263,385,1308,1799,924,896,528,975,1660,1136,1629,913,624,949,709,1355,1503,1538,450,1351,1413,1400,633,1663,270,1494,523,1810,1106,1689,854,133,392,1389,1801,1332,519,791,608,1342,1098,122,340,1518,1014,581,1491,1507,1338,647,437,431,746,565,471,615,861,829,691,1056,1361,1589,865,24,888,1728,1608,1406,905,561,687,1021,1847,1281,874,1255,1378,1776,599,1545,410,1005,1514,524,946,701,132,941,750,1566,1306,148,817,503,933,36,906,411,98,1546,1609,820,1625,1584,278,1780,758,310,45,1221,1509,711,349,914,1163,1602,1646,1276,1818,1384,720,1034,1159,1286,1452,291,1489,533,336,12,1640,745,361,1219,1116,721,1717,1019,1138,81,321,592,173,1643,702,496,788,774,1527,952,1345,823,553,333,716,1578,1669,1588,1473,1581,959,1410,465,1470,1234,1352,1742,684,1411,542,1284,944,1425,400,782,915,127,429,1737,1552,378,216,1825,1521,1623,1072,119,995,930,1420,1399,1093,1419,935,1833,1641,807,289,347,1682,1624,158,1379,600,932,586,1651,574,460,1214,676,120,1398,626,1826,1777,394,856,1007,204,473,1156,1679,156,1369,499,591,384,482,1758,927,1105,1793,303,942,1353,1784,41,1456,631,186,960,1551,984,405,304,416,348,47,902,477,1664,707,1706,1530,1830,330,1567,1730,981,74,945,1150,152,113,996,922,849,351,614,488,1429,776,196,596,1711,504,1232,725,425,842,851,435,974,252,677,1691,710,628,88,635,300,699,1193,1715,90,476,769,153,967,700,1298,826,1632,527,1045,18,1820,1638,1343,961,537,1296,1140,343,1596,1512,1741,1134,726,1446,1436,987,1537,1235,356,1303,1587,187,1006,756,283,479,540,653,917,862,575,292,396,1383,1670,589,743,1215,1060,1488,414,96,1634,1476,1677,1123,1827,4,649,1529,824,1675,68,571,1775,1258,852,1155,584,1237,1732,882,1054,1603,843,1197,1099,686,337,1180,218,358,145,658,1391,1787,594,1681,853,1341,1535,185,438,1610,1541,1293,1644,1256,114,1277,1761,642,108,267,1674,399,205,408,1747,1560,1196,1117,825,505,1265,129,1467,236,259,1698,669,573,375,1481,1321,7,670,276,765,140,141,1363,1431,814,94,675,99,1212,1112,1182,61,248,448,815,463,1423,568,1186,483,1090,1131,402,456,1462,1061,1240,1173,1839,1693,247,126,787,1387,1778,393,1201,1359,682,1595,1333,1774,497,485,1842,530,579,993,1463,1822,651,1662,200,1486,338,1585,1364,146,481,58,130,662,44,1358,1109,539,876,1074,1125,325,985,13,749,1209,1290,1736,786,1645,170,1172,436,513,1064,322,962,1477,777,549,1501,1533,620,1709,1591,1043,1687,409,1130,809,50,672,1485,238,1568,731,1309,1037,1821,1113,235,1412,798,1576,491,1791,883,1087,1620,83,1243,1086,353,1160,87,1289,773,1831,1414,198,536,34,535,1164,531,1312)(6,832,1166,1292,948,447,245,125,965,1829,988,264,492,797,1162,1024,992,1238,1382,1288,1107,1422,1416,1206,515,346,362,1272,839,335,1513,1731,755,511,1245,1062,1334,521,52,464,1461,1720,999,164,747,43,1330,359,1583,190,1220,453,440,502,1403,315,350,498,1144,904,1229,940,224,717,193,878,1325,957,929,54,545,1468,1590,1287,63,1794,161,124,1474,331,958,582,1718,1614,1247,328,609,885,916,1704,1699,19,963,954,1396,802,1228,1190,1592,299,742,1749,55,1800,770,855,97,583,1631,309,1696,1026,1100,1216,813,9,543,220,1565,1558,313,1194,1441,1438,1395,1789,1450,1725,578,419,1075,226,82,1805,274,234,1433,1199,1547,837,822,1848,518,167,16,850,1023,757,785,538,118,1621,423,8,1719,1305,514,1249,1659,650,1685,91,1179,1252,1048,1471,1626,37,1283,1208,733,49,1672,761,493,197,727,1165,1049,734,1402,1511,1381,1487,103,1375,679,1366,1205,1760,1542,240,811,580,180,643,1824,919,1053,1421,242,418,1198,943,10,556,1012,838,818,1008,590,1157,137,762,1268,1324,525,1744,683,629,159,1129,1148,334,898,201,1836,1059,1710,1367,1401,1260,40,1347,972,57,110,558,1628,1499,522,445,966,1069,1807,237,317,1654,279,256,67,105,534,978,1189,1783,290,1472,1094,363,1327,1571,203,314,840,182,559,1548,1465,1604,1009,253,1593,1063,1115,89,1493,1636,1440,1802,708,953,1559,1020,666,602,1781,1688,871,546,1022,1526,1815,903,622,329,1161,387,297,1188,783,980,1192,444,459,188,772,1458,1447,1753,864,509,994,1118,241,280,897,607,1301,1230,775,1017,223,1788,1555,695,795,296,603,1432,195,25,192,611,273,973,373,1738,1797,517,80,1337,1647,1032,319,1223,1572,925,1124,84,732,884,1386,468,1266,1703,1498,1722,102,39,1291,685,1823,271,1598,551,1241,1838,1226,345,706,636,1702,284,1407,139,42,1496,1185,1052,806,828,771,1050,1139,21,1114,1346,863,1373,1639,1768,1057,752,169,554,175,1207,1676,1041,107,1135,1642,986,1752,231,640,426,1782,1449,764,1767,1085,1426,605,1404,678,964,461,374,780,1018,1607,1483,1141,1484,1455,870,389,1236,1102,704,1690,1482,877,254,1850,541,1322,689,1318,1819,1317,1655,439,22,1080,564,1766,693,1500,767,610,1770,233,766,970,62,1362,277,1055,441,1618,740,32,816,544,1122,285,1615,368,1181,1803,1044,723,1444,166,810,262,144,1233,320,352,1304,1076,376,891,1531,789,1340,1417,681,1683,208,1067,117,563,644,1104,1840,868,1528,728,779,977,1314,744,495,1809,1191,1723,1795,1372,1707,489,268,1515,367,1653,191,1202,31,390,860,1274,1323,11,1368,1356,79,520,258,1171,494,652,1460,75,466,1066,1727,1606,160,14,680,613,792,391,1397,1451,722,763,1370,667,1285,430,1390,1038,1405,1605,1792,671,741,641,1754,1178,1759,1039,422,490,1712,1713,1088,1577,1183,1846,532,372,1478,1280,1184,155,1594,1617,386,1724,588,1348,1028,736,657,293,106,1445,1648,1454,179,1586,1745,1211,92,576,1739,597,209,560,312,243,1415,1668,318,512,1000,172,1259,66,462,1195,1708,1495,1635,673,1516,1167,754,656,1010,250,799,971,121,616,1269,698,1001,595,78,1282,1785,178,1029,324,1204,1849,26,730,176,377,219,1757,1439,365,793,638,1110,1264,183,470,1457,1561,1278,991,936,1200,1313,1374,1570,1097,847,1666,266,550,1497,618,316,866,417,407,1127,719,112,341,257,1510,713,557,1316,892,510,215,33,1835,808,1326,221,1027,555,1153,886,1700,1084,1377,1763,138,660,1154,1553,1218,1765,1225,1143,162,1176,1601,879,1418,1002,1011,1428,1128,621,1349,142,1257,1657,1077,424,1365,1239,1502,1004,931,857,1740,1701,703,908,1779,872,123,286,1523,23,323,147,1146,189,1376,951,1806,1505,1437,1549,1448,869,302,893,1667,1222,397,1812,69,500,911,1550,60,748,926,95,1371,1469,1262,1354,484,1697,174,697,1380,1649,846,997,1459,76,27,1227,455,1733,1177,639,1393,1279,202,1267,921,1253,474,1695,229,171,1506,1564,1046,212,20,918,434,760,454,433,923,858,1734,781,230,332,28,1637,1475,301,116,1424,1726,938,1071,1453,428,909,569,1311,442,1169,111,501,619,383,1388,443,894,272,380,265,184,275,1137,1520,1300,1030,508,901,326,1079,1065,1357,1151,210,1680,1261,1532,1772,715,834,136,1132,737,634,1492,1108,213,1841,1517,1320,364,1562,401,567,694,819,1133,469,35,577,207,251,690,939,1504,1142,344,632,1808,1543,1095,73,1575,269,228,1033,244,307,1755,1442,947,1817,920,1350,1036,1705,547,287,1103,912,1721,1152,907,1329,339,848,1443,308,1254,77,475,598,979,572), (1,1460,2)(3,984,240)(4,1163,11)(5,12,988)(6,139,1371)(7,1175,1443)(8,1678,960)(9,155,1766)(10,951,811)(13,166,1400)(14,1004,229)(15,1212,1261)(16,75,740)(17,533,1190)(18,1180,994)(19,1684,1298)(20,1586,266)(21,337,942)(22,999,470)(23,1271,1150)(24,1227,1527)(25,576,137)(26,290,1807)(27,1700,1028)(28,870,569)(29,1793,344)(30,584,77)(31,1594,1720)(32,362,1110)(34,523,1426)(35,1788,213)(36,485,1102)(37,332,1252)(38,206,671)(39,335,893)(40,930,246)(41,1397,676)(42,1051,150)(43,993,651)(44,110,488)(45,683,1250)(46,1493,1756)(47,1029,310)(48,568,172)(49,144,208)(50,1760,851)(51,487,1057)(52,184,182)(53,532,1462)(54,1632,446)(55,866,1838)(56,1354,1358)(57,1325,1137)(58,325,1162)(59,608,1062)(60,1643,941)(61,1848,1698)(62,238,1629)(63,1737,664)(64,1293,183)(65,472,704)(66,86,217)(67,296,1039)(68,1063,1258)(69,1141,939)(70,926,1265)(71,1083,1322)(72,1602,1208)(73,264,445)(74,1622,167)(76,1651,975)(78,1078,480)(79,516,1650)(80,1012,1745)(81,513,1124)(82,140,1182)(83,406,510)(84,1055,273)(85,1155,346)(87,1074,469)(88,165,475)(89,1541,187)(90,1381,1709)(91,256,1701)(92,1563,889)(93,617,613)(94,1834,1617)(95,983,1248)(96,1368,1384)(97,312,1690)(98,919,1466)(99,630,1388)(100,353,1316)(101,1080,1310)(102,1771,1070)(103,395,1034)(104,1237,1457)(105,1419,1831)(106,1442,1478)(107,1191,972)(108,1412,1229)(109,223,1119)(111,1173,1168)(112,559,1053)(113,1687,590)(114,686,201)(115,528,1432)(116,861,720)(117,1106,530)(118,1398,255)(119,646,1008)(120,1817,311)(121,786,845)(122,656,1006)(123,322,1158)(124,967,668)(125,176,681)(126,1118,1369)(127,627,1542)(128,143,953)(129,192,477)(130,1307,424)(131,1049,429)(132,1267,1276)(133,474,542)(134,507,1122)(135,900,546)(136,1674,1336)(138,1576,1246)(141,1850,745)(142,1779,512)(145,614,1572)(146,575,493)(147,1726,977)(148,566,1036)(149,1573,195)(151,326,1090)(152,675,1188)(153,1185,1134)(154,214,640)(156,1441,928)(157,389,796)(158,212,895)(159,479,1423)(160,995,922)(161,1220,954)(162,199,1387)(163,321,1022)(164,1659,1382)(168,1019,1422)(169,1653,1260)(170,661,1349)(171,976,1312)(173,278,1806)(174,935,1810)(175,747,660)(177,1243,1380)(178,816,1461)(179,1489,196)(180,685,736)(181,1038,491)(185,1314,820)(186,709,1523)(188,226,1765)(189,1069,1305)(190,655,823)(191,881,1814)(193,1744,737)(194,596,454)(197,974,798)(198,543,356)(200,691,1362)(202,997,1104)(203,914,357)(204,1828,1696)(205,739,1705)(207,1193,1748)(209,1296,1545)(210,1718,818)(211,365,1630)(215,742,1703)(216,1181,589)(218,1537,622)(219,1207,299)(220,1176,280)(221,647,707)(222,347,619)(224,1685,598)(225,1515,467)(227,1626,1790)(228,1234,420)(230,1635,1282)(231,762,1323)(232,1145,1722)(233,1217,604)(234,734,1169)(235,1540,1809)(236,585,1257)(237,937,593)(239,1174,643)(241,1035,451)(242,514,639)(243,964,313)(244,768,248)(245,1072,1273)(247,716,1139)(249,924,314)(250,1301,1421)(251,1761,355)(252,1581,1370)(253,802,1649)(254,343,304)(257,1494,628)(258,884,1571)(259,1657,1328)(260,1200,1821)(261,1837,1283)(262,876,270)(263,1026,637)(265,667,407)(267,450,372)(268,1774,624)(269,425,1786)(271,1024,748)(272,1530,645)(274,1796,1546)(275,1832,1333)(276,625,1454)(277,831,784)(279,1236,544)(281,1612,1348)(282,1132,987)(283,911,1804)(284,936,309)(285,836,724)(286,715,368)(287,1472,1350)(288,1403,865)(289,438,1782)(291,478,1144)(292,1841,833)(293,813,689)(294,1032,1619)(295,713,1675)(297,1096,1652)(298,982,1066)(300,1791,1048)(301,1640,1507)(302,749,1658)(303,358,1050)(305,1424,1603)(306,1519,1688)(307,898,1416)(308,956,1436)(315,1811,726)(316,1483,359)(317,1475,582)(318,663,505)(319,387,728)(320,1391,361)(323,1464,990)(324,1240,1120)(327,1084,1501)(328,844,1521)(329,808,1249)(330,1231,1334)(331,1605,744)(333,746,1279)(334,1003,1430)(336,1668,1730)(338,827,1285)(339,364,1020)(340,1825,1262)(341,1206,1318)(342,494,398)(345,782,1061)(348,780,1587)(349,932,719)(350,442,363)(351,455,778)(352,1143,1133)(354,727,1589)(360,896,1604)(366,1706,1151)(367,519,463)(369,1752,1351)(370,1673,680)(371,1346,1014)(373,751,817)(374,810,1654)(375,1819,1116)(376,825,1609)(377,864,1366)(378,962,459)(379,908,996)(380,414,1539)(381,1633,783)(382,702,1288)(383,570,1567)(384,669,732)(385,1197,1516)(386,696,773)(388,1161,1798)(390,1156,1664)(391,1712,839)(392,1637,774)(393,1396,448)(394,1196,636)(396,1123,444)(397,1086,1025)(399,1580,1680)(400,1584,1128)(401,434,1768)(402,1749,483)(403,1154,1215)(404,1235,1614)(405,1820,1655)(408,1808,1147)(409,1067,899)(410,1676,620)(411,594,489)(412,1297,978)(413,1315,468)(415,1079,807)(416,597,788)(417,1588,465)(418,1753,1001)(419,511,498)(421,1347,933)(422,1263,1149)(423,572,929)(426,1136,1392)(427,460,943)(428,878,1189)(430,1470,1232)(431,1479,1241)(432,1662,730)(433,1522,1833)(435,1319,1575)(436,592,925)(437,1404,731)(439,1562,1448)(440,1778,1364)(441,1477,633)(443,1710,958)(447,481,1172)(449,1733,1414)(452,1812,1644)(453,1564,903)(456,1056,891)(457,1097,1476)(458,1496,1557)(461,1583,1127)(462,1031,1131)(464,1686,1625)(466,758,1677)(471,1047,1555)(473,913,1550)(476,1195,1514)(482,1715,1803)(484,1345,1847)(486,1595,892)(490,1697,1365)(492,1360,959)(495,1560,1005)(496,650,1081)(497,522,1691)(499,829,1601)(500,1320,541)(501,1107,1815)(502,1228,545)(503,558,1661)(504,1797,658)(506,950,610)(508,761,1395)(509,1578,1568)(515,1556,776)(517,918,832)(518,607,557)(520,1393,1505)(521,1449,886)(524,840,1769)(525,981,1043)(526,822,1818)(527,1281,1708)(529,824,1459)(531,1377,1480)(534,1210,1627)(535,710,1621)(536,803,1549)(537,1591,1471)(538,1721,1247)(539,738,1553)(540,698,1689)(547,1787,612)(548,1747,618)(549,764,1021)(550,894,741)(551,1682,814)(552,1775,577)(553,1275,1755)(554,1295,1813)(555,1023,1192)(556,1108,1287)(560,1204,1071)(561,1663,920)(562,1504,642)(563,1645,1729)(564,1059,1615)(565,794,1672)(567,1092,1679)(571,835,904)(573,1846,1308)(574,1361,1239)(578,907,1800)(579,1724,1579)(580,1363,1099)(581,1535,641)(583,688,905)(586,1378,879)(587,1165,915)(588,1656,777)(591,1835,599)(595,1125,841)(600,1428,874)(601,890,1511)(602,1383,1054)(603,1140,1827)(605,770,1010)(606,1313,743)(609,1341,1130)(611,1290,1410)(615,1781,821)(616,1438,1639)(621,1727,858)(623,799,1082)(626,902,1171)(629,989,1566)(631,1429,1076)(632,1707,847)(634,921,1085)(635,673,946)(638,752,1592)(644,775,795)(648,923,826)(649,703,1816)(652,1166,1415)(653,717,812)(654,963,1518)(657,1015,883)(659,1607,1714)(662,699,1324)(665,1222,682)(666,1138,712)(670,897,1830)(672,1406,1642)(674,1170,772)(677,809,679)(678,1418,797)(684,1331,1468)(687,901,1776)(690,1399,1735)(692,1451,1058)(693,1289,1692)(694,1089,787)(695,848,1311)(697,1329,1052)(700,1757,1491)(701,1789,1716)(705,1783,1270)(706,852,945)(708,1577,1526)(711,1660,819)(714,1734,985)(718,733,1758)(721,779,1529)(722,855,1340)(723,1465,1135)(725,1375,1037)(729,1435,1444)(735,1342,1593)(750,1543,1538)(753,1482,1299)(754,1739,1520)(755,1233,1269)(756,880,1292)(757,1254,1474)(759,1641,940)(760,1401,1631)(763,1245,1792)(765,1327,1343)(766,1463,1728)(767,1094,877)(769,1822,1148)(771,1002,1330)(781,966,1699)(785,1736,1060)(789,1503,1109)(790,1389,1628)(791,1446,1785)(792,1772,1570)(793,1453,1648)(800,1013,863)(801,1770,1068)(804,1574,1386)(805,1353,1357)(806,873,1845)(815,955,1218)(830,991,1117)(834,1683,1011)(837,1184,1484)(838,1561,1440)(842,1413,1027)(843,1717,1531)(846,1450,1499)(849,856,1723)(850,1548,857)(853,1751,1033)(854,1268,1536)(859,1251,860)(862,970,1379)(867,1309,1695)(868,1278,1103)(869,948,1114)(871,1304,1702)(872,1743,1321)(875,1590,1552)(882,1746,1513)(885,1488,1599)(887,1794,1352)(888,1098,1095)(906,1447,1213)(909,1669,949)(910,1242,1618)(912,1738,938)(916,1509,1611)(917,1824,1359)(927,1490,1272)(931,1044,1492)(934,1300,1711)(944,1532,998)(947,1303,1394)(952,1585,1598)(957,1178,1372)(961,1367,1693)(965,1829,1198)(968,1839,1390)(969,1087,1740)(971,1624,1742)(973,1799,1773)(979,1073,1481)(980,1294,1544)(986,1405,1487)(992,1502,1041)(1000,1411,1777)(1007,1473,1495)(1009,1407,1840)(1016,1402,1844)(1017,1559,1606)(1018,1344,1750)(1030,1160,1485)(1040,1456,1506)(1042,1802,1762)(1045,1434,1376)(1046,1088,1153)(1064,1214,1636)(1065,1486,1427)(1075,1497,1647)(1077,1534,1620)(1091,1177,1634)(1093,1469,1801)(1100,1202,1795)(1101,1326,1569)(1105,1152,1694)(1111,1373,1582)(1112,1223,1826)(1113,1126,1759)(1115,1337,1356)(1121,1836,1159)(1129,1338,1600)(1142,1385,1610)(1146,1437,1183)(1157,1266,1280)(1164,1512,1194)(1167,1417,1731)(1179,1767,1713)(1186,1452,1455)(1187,1467,1253)(1199,1547,1517)(1201,1425,1291)(1203,1500,1302)(1205,1255,1671)(1209,1719,1670)(1211,1508,1409)(1216,1238,1704)(1219,1667,1780)(1221,1784,1439)(1224,1306,1725)(1225,1646,1284)(1226,1551,1681)(1230,1638,1732)(1244,1524,1458)(1256,1259,1525)(1264,1805,1498)(1274,1565,1528)(1277,1666,1335)(1286,1510,1420)(1317,1408,1764)(1332,1741,1849)(1339,1533,1754)(1355,1374,1596)(1431,1445,1554)(1433,1843,1608)(1558,1623,1665)(1597,1763,1842)(1613,1823,1616) );
 
Copy content sage:G = PermutationGroup(['(3,1599,976,371,163,1149,751,617,1464,983,398,369,712,370,246,835,1073,1479,1392,889,1175,449,1248,427,768,86,1089,404,71,1427,1213,1622,101,867,211,718,1746,812,177,646,1678,1299,1684,1101,796,85,214,480,990,507,739,1832,714,803,1082,1025,1047,801,668,357,1811,1714,446,1569,151,1217,1147,1508,627,15,612,1302,255,1582,30,1168,562,1814,1751,131,355,150,587,1385,467,969,1121,1769,729,928,281,630,1534,821,206,516,1773,1336,56,115,1480,880,1580,1242,1661,1828,1658,421,1250,1557,1058,1158,298,65,1630,836,1078,623,552,1246,956,1573,1612,735,859,1344,989,100,406,395,1081,1665,1394,1409,661,873,1070,665,1556,1466,692,1524,1231,950,38,327,831,1307,982,165,72,1251,1187,833,294,900,1145,51,413,217,360,1764,738,790,260,1600,844,249,388,305,1294,1671,1013,1539,1650,282,526,1490,759,381,1563,70,664,875,1319,1748,1786,1597,1574,199,1536,1616,46,784,887,1408,1331,354,225,1295,1743,1796,881,506,1813,593,452,486,143,794,17,1652,955,1519,705,724,1694,1224,1170,109,1328,529,585,1091,1716,696,1263,845,1035,1015,841,1297,1843,910,655,1435,1611,432,800,934,29,1210,1673,1273,1042,1613,311,93,648,487,1174,478,1750,366,472,342,451,1119,804,688,1126,1656,1360,1092,181,1804,1120,645,570,1816,227,382,805,601,674,1762,168,1203,194,604,1339,548,134,1845,1430,232,1735,1315,1068,1096,830,1003,1837,1686,1335,5,1031,1016,306,654,420,1619,1579,48,1771,1627,778,1434,1275,128,403,64,458,415,412,659,1540,295,288,1633,1310,1844,1040,637,753,827,157,1544,222,1270,1756,998,1083,53,1798,104,1111,1554,261,663,625,1051,457,899,890,1834,154,149,937,968,1244,1525,606,239,135,1271,895,1522,379,1729,1692,59,1790,566,263,385,1308,1799,924,896,528,975,1660,1136,1629,913,624,949,709,1355,1503,1538,450,1351,1413,1400,633,1663,270,1494,523,1810,1106,1689,854,133,392,1389,1801,1332,519,791,608,1342,1098,122,340,1518,1014,581,1491,1507,1338,647,437,431,746,565,471,615,861,829,691,1056,1361,1589,865,24,888,1728,1608,1406,905,561,687,1021,1847,1281,874,1255,1378,1776,599,1545,410,1005,1514,524,946,701,132,941,750,1566,1306,148,817,503,933,36,906,411,98,1546,1609,820,1625,1584,278,1780,758,310,45,1221,1509,711,349,914,1163,1602,1646,1276,1818,1384,720,1034,1159,1286,1452,291,1489,533,336,12,1640,745,361,1219,1116,721,1717,1019,1138,81,321,592,173,1643,702,496,788,774,1527,952,1345,823,553,333,716,1578,1669,1588,1473,1581,959,1410,465,1470,1234,1352,1742,684,1411,542,1284,944,1425,400,782,915,127,429,1737,1552,378,216,1825,1521,1623,1072,119,995,930,1420,1399,1093,1419,935,1833,1641,807,289,347,1682,1624,158,1379,600,932,586,1651,574,460,1214,676,120,1398,626,1826,1777,394,856,1007,204,473,1156,1679,156,1369,499,591,384,482,1758,927,1105,1793,303,942,1353,1784,41,1456,631,186,960,1551,984,405,304,416,348,47,902,477,1664,707,1706,1530,1830,330,1567,1730,981,74,945,1150,152,113,996,922,849,351,614,488,1429,776,196,596,1711,504,1232,725,425,842,851,435,974,252,677,1691,710,628,88,635,300,699,1193,1715,90,476,769,153,967,700,1298,826,1632,527,1045,18,1820,1638,1343,961,537,1296,1140,343,1596,1512,1741,1134,726,1446,1436,987,1537,1235,356,1303,1587,187,1006,756,283,479,540,653,917,862,575,292,396,1383,1670,589,743,1215,1060,1488,414,96,1634,1476,1677,1123,1827,4,649,1529,824,1675,68,571,1775,1258,852,1155,584,1237,1732,882,1054,1603,843,1197,1099,686,337,1180,218,358,145,658,1391,1787,594,1681,853,1341,1535,185,438,1610,1541,1293,1644,1256,114,1277,1761,642,108,267,1674,399,205,408,1747,1560,1196,1117,825,505,1265,129,1467,236,259,1698,669,573,375,1481,1321,7,670,276,765,140,141,1363,1431,814,94,675,99,1212,1112,1182,61,248,448,815,463,1423,568,1186,483,1090,1131,402,456,1462,1061,1240,1173,1839,1693,247,126,787,1387,1778,393,1201,1359,682,1595,1333,1774,497,485,1842,530,579,993,1463,1822,651,1662,200,1486,338,1585,1364,146,481,58,130,662,44,1358,1109,539,876,1074,1125,325,985,13,749,1209,1290,1736,786,1645,170,1172,436,513,1064,322,962,1477,777,549,1501,1533,620,1709,1591,1043,1687,409,1130,809,50,672,1485,238,1568,731,1309,1037,1821,1113,235,1412,798,1576,491,1791,883,1087,1620,83,1243,1086,353,1160,87,1289,773,1831,1414,198,536,34,535,1164,531,1312)(6,832,1166,1292,948,447,245,125,965,1829,988,264,492,797,1162,1024,992,1238,1382,1288,1107,1422,1416,1206,515,346,362,1272,839,335,1513,1731,755,511,1245,1062,1334,521,52,464,1461,1720,999,164,747,43,1330,359,1583,190,1220,453,440,502,1403,315,350,498,1144,904,1229,940,224,717,193,878,1325,957,929,54,545,1468,1590,1287,63,1794,161,124,1474,331,958,582,1718,1614,1247,328,609,885,916,1704,1699,19,963,954,1396,802,1228,1190,1592,299,742,1749,55,1800,770,855,97,583,1631,309,1696,1026,1100,1216,813,9,543,220,1565,1558,313,1194,1441,1438,1395,1789,1450,1725,578,419,1075,226,82,1805,274,234,1433,1199,1547,837,822,1848,518,167,16,850,1023,757,785,538,118,1621,423,8,1719,1305,514,1249,1659,650,1685,91,1179,1252,1048,1471,1626,37,1283,1208,733,49,1672,761,493,197,727,1165,1049,734,1402,1511,1381,1487,103,1375,679,1366,1205,1760,1542,240,811,580,180,643,1824,919,1053,1421,242,418,1198,943,10,556,1012,838,818,1008,590,1157,137,762,1268,1324,525,1744,683,629,159,1129,1148,334,898,201,1836,1059,1710,1367,1401,1260,40,1347,972,57,110,558,1628,1499,522,445,966,1069,1807,237,317,1654,279,256,67,105,534,978,1189,1783,290,1472,1094,363,1327,1571,203,314,840,182,559,1548,1465,1604,1009,253,1593,1063,1115,89,1493,1636,1440,1802,708,953,1559,1020,666,602,1781,1688,871,546,1022,1526,1815,903,622,329,1161,387,297,1188,783,980,1192,444,459,188,772,1458,1447,1753,864,509,994,1118,241,280,897,607,1301,1230,775,1017,223,1788,1555,695,795,296,603,1432,195,25,192,611,273,973,373,1738,1797,517,80,1337,1647,1032,319,1223,1572,925,1124,84,732,884,1386,468,1266,1703,1498,1722,102,39,1291,685,1823,271,1598,551,1241,1838,1226,345,706,636,1702,284,1407,139,42,1496,1185,1052,806,828,771,1050,1139,21,1114,1346,863,1373,1639,1768,1057,752,169,554,175,1207,1676,1041,107,1135,1642,986,1752,231,640,426,1782,1449,764,1767,1085,1426,605,1404,678,964,461,374,780,1018,1607,1483,1141,1484,1455,870,389,1236,1102,704,1690,1482,877,254,1850,541,1322,689,1318,1819,1317,1655,439,22,1080,564,1766,693,1500,767,610,1770,233,766,970,62,1362,277,1055,441,1618,740,32,816,544,1122,285,1615,368,1181,1803,1044,723,1444,166,810,262,144,1233,320,352,1304,1076,376,891,1531,789,1340,1417,681,1683,208,1067,117,563,644,1104,1840,868,1528,728,779,977,1314,744,495,1809,1191,1723,1795,1372,1707,489,268,1515,367,1653,191,1202,31,390,860,1274,1323,11,1368,1356,79,520,258,1171,494,652,1460,75,466,1066,1727,1606,160,14,680,613,792,391,1397,1451,722,763,1370,667,1285,430,1390,1038,1405,1605,1792,671,741,641,1754,1178,1759,1039,422,490,1712,1713,1088,1577,1183,1846,532,372,1478,1280,1184,155,1594,1617,386,1724,588,1348,1028,736,657,293,106,1445,1648,1454,179,1586,1745,1211,92,576,1739,597,209,560,312,243,1415,1668,318,512,1000,172,1259,66,462,1195,1708,1495,1635,673,1516,1167,754,656,1010,250,799,971,121,616,1269,698,1001,595,78,1282,1785,178,1029,324,1204,1849,26,730,176,377,219,1757,1439,365,793,638,1110,1264,183,470,1457,1561,1278,991,936,1200,1313,1374,1570,1097,847,1666,266,550,1497,618,316,866,417,407,1127,719,112,341,257,1510,713,557,1316,892,510,215,33,1835,808,1326,221,1027,555,1153,886,1700,1084,1377,1763,138,660,1154,1553,1218,1765,1225,1143,162,1176,1601,879,1418,1002,1011,1428,1128,621,1349,142,1257,1657,1077,424,1365,1239,1502,1004,931,857,1740,1701,703,908,1779,872,123,286,1523,23,323,147,1146,189,1376,951,1806,1505,1437,1549,1448,869,302,893,1667,1222,397,1812,69,500,911,1550,60,748,926,95,1371,1469,1262,1354,484,1697,174,697,1380,1649,846,997,1459,76,27,1227,455,1733,1177,639,1393,1279,202,1267,921,1253,474,1695,229,171,1506,1564,1046,212,20,918,434,760,454,433,923,858,1734,781,230,332,28,1637,1475,301,116,1424,1726,938,1071,1453,428,909,569,1311,442,1169,111,501,619,383,1388,443,894,272,380,265,184,275,1137,1520,1300,1030,508,901,326,1079,1065,1357,1151,210,1680,1261,1532,1772,715,834,136,1132,737,634,1492,1108,213,1841,1517,1320,364,1562,401,567,694,819,1133,469,35,577,207,251,690,939,1504,1142,344,632,1808,1543,1095,73,1575,269,228,1033,244,307,1755,1442,947,1817,920,1350,1036,1705,547,287,1103,912,1721,1152,907,1329,339,848,1443,308,1254,77,475,598,979,572)', '(1,1460,2)(3,984,240)(4,1163,11)(5,12,988)(6,139,1371)(7,1175,1443)(8,1678,960)(9,155,1766)(10,951,811)(13,166,1400)(14,1004,229)(15,1212,1261)(16,75,740)(17,533,1190)(18,1180,994)(19,1684,1298)(20,1586,266)(21,337,942)(22,999,470)(23,1271,1150)(24,1227,1527)(25,576,137)(26,290,1807)(27,1700,1028)(28,870,569)(29,1793,344)(30,584,77)(31,1594,1720)(32,362,1110)(34,523,1426)(35,1788,213)(36,485,1102)(37,332,1252)(38,206,671)(39,335,893)(40,930,246)(41,1397,676)(42,1051,150)(43,993,651)(44,110,488)(45,683,1250)(46,1493,1756)(47,1029,310)(48,568,172)(49,144,208)(50,1760,851)(51,487,1057)(52,184,182)(53,532,1462)(54,1632,446)(55,866,1838)(56,1354,1358)(57,1325,1137)(58,325,1162)(59,608,1062)(60,1643,941)(61,1848,1698)(62,238,1629)(63,1737,664)(64,1293,183)(65,472,704)(66,86,217)(67,296,1039)(68,1063,1258)(69,1141,939)(70,926,1265)(71,1083,1322)(72,1602,1208)(73,264,445)(74,1622,167)(76,1651,975)(78,1078,480)(79,516,1650)(80,1012,1745)(81,513,1124)(82,140,1182)(83,406,510)(84,1055,273)(85,1155,346)(87,1074,469)(88,165,475)(89,1541,187)(90,1381,1709)(91,256,1701)(92,1563,889)(93,617,613)(94,1834,1617)(95,983,1248)(96,1368,1384)(97,312,1690)(98,919,1466)(99,630,1388)(100,353,1316)(101,1080,1310)(102,1771,1070)(103,395,1034)(104,1237,1457)(105,1419,1831)(106,1442,1478)(107,1191,972)(108,1412,1229)(109,223,1119)(111,1173,1168)(112,559,1053)(113,1687,590)(114,686,201)(115,528,1432)(116,861,720)(117,1106,530)(118,1398,255)(119,646,1008)(120,1817,311)(121,786,845)(122,656,1006)(123,322,1158)(124,967,668)(125,176,681)(126,1118,1369)(127,627,1542)(128,143,953)(129,192,477)(130,1307,424)(131,1049,429)(132,1267,1276)(133,474,542)(134,507,1122)(135,900,546)(136,1674,1336)(138,1576,1246)(141,1850,745)(142,1779,512)(145,614,1572)(146,575,493)(147,1726,977)(148,566,1036)(149,1573,195)(151,326,1090)(152,675,1188)(153,1185,1134)(154,214,640)(156,1441,928)(157,389,796)(158,212,895)(159,479,1423)(160,995,922)(161,1220,954)(162,199,1387)(163,321,1022)(164,1659,1382)(168,1019,1422)(169,1653,1260)(170,661,1349)(171,976,1312)(173,278,1806)(174,935,1810)(175,747,660)(177,1243,1380)(178,816,1461)(179,1489,196)(180,685,736)(181,1038,491)(185,1314,820)(186,709,1523)(188,226,1765)(189,1069,1305)(190,655,823)(191,881,1814)(193,1744,737)(194,596,454)(197,974,798)(198,543,356)(200,691,1362)(202,997,1104)(203,914,357)(204,1828,1696)(205,739,1705)(207,1193,1748)(209,1296,1545)(210,1718,818)(211,365,1630)(215,742,1703)(216,1181,589)(218,1537,622)(219,1207,299)(220,1176,280)(221,647,707)(222,347,619)(224,1685,598)(225,1515,467)(227,1626,1790)(228,1234,420)(230,1635,1282)(231,762,1323)(232,1145,1722)(233,1217,604)(234,734,1169)(235,1540,1809)(236,585,1257)(237,937,593)(239,1174,643)(241,1035,451)(242,514,639)(243,964,313)(244,768,248)(245,1072,1273)(247,716,1139)(249,924,314)(250,1301,1421)(251,1761,355)(252,1581,1370)(253,802,1649)(254,343,304)(257,1494,628)(258,884,1571)(259,1657,1328)(260,1200,1821)(261,1837,1283)(262,876,270)(263,1026,637)(265,667,407)(267,450,372)(268,1774,624)(269,425,1786)(271,1024,748)(272,1530,645)(274,1796,1546)(275,1832,1333)(276,625,1454)(277,831,784)(279,1236,544)(281,1612,1348)(282,1132,987)(283,911,1804)(284,936,309)(285,836,724)(286,715,368)(287,1472,1350)(288,1403,865)(289,438,1782)(291,478,1144)(292,1841,833)(293,813,689)(294,1032,1619)(295,713,1675)(297,1096,1652)(298,982,1066)(300,1791,1048)(301,1640,1507)(302,749,1658)(303,358,1050)(305,1424,1603)(306,1519,1688)(307,898,1416)(308,956,1436)(315,1811,726)(316,1483,359)(317,1475,582)(318,663,505)(319,387,728)(320,1391,361)(323,1464,990)(324,1240,1120)(327,1084,1501)(328,844,1521)(329,808,1249)(330,1231,1334)(331,1605,744)(333,746,1279)(334,1003,1430)(336,1668,1730)(338,827,1285)(339,364,1020)(340,1825,1262)(341,1206,1318)(342,494,398)(345,782,1061)(348,780,1587)(349,932,719)(350,442,363)(351,455,778)(352,1143,1133)(354,727,1589)(360,896,1604)(366,1706,1151)(367,519,463)(369,1752,1351)(370,1673,680)(371,1346,1014)(373,751,817)(374,810,1654)(375,1819,1116)(376,825,1609)(377,864,1366)(378,962,459)(379,908,996)(380,414,1539)(381,1633,783)(382,702,1288)(383,570,1567)(384,669,732)(385,1197,1516)(386,696,773)(388,1161,1798)(390,1156,1664)(391,1712,839)(392,1637,774)(393,1396,448)(394,1196,636)(396,1123,444)(397,1086,1025)(399,1580,1680)(400,1584,1128)(401,434,1768)(402,1749,483)(403,1154,1215)(404,1235,1614)(405,1820,1655)(408,1808,1147)(409,1067,899)(410,1676,620)(411,594,489)(412,1297,978)(413,1315,468)(415,1079,807)(416,597,788)(417,1588,465)(418,1753,1001)(419,511,498)(421,1347,933)(422,1263,1149)(423,572,929)(426,1136,1392)(427,460,943)(428,878,1189)(430,1470,1232)(431,1479,1241)(432,1662,730)(433,1522,1833)(435,1319,1575)(436,592,925)(437,1404,731)(439,1562,1448)(440,1778,1364)(441,1477,633)(443,1710,958)(447,481,1172)(449,1733,1414)(452,1812,1644)(453,1564,903)(456,1056,891)(457,1097,1476)(458,1496,1557)(461,1583,1127)(462,1031,1131)(464,1686,1625)(466,758,1677)(471,1047,1555)(473,913,1550)(476,1195,1514)(482,1715,1803)(484,1345,1847)(486,1595,892)(490,1697,1365)(492,1360,959)(495,1560,1005)(496,650,1081)(497,522,1691)(499,829,1601)(500,1320,541)(501,1107,1815)(502,1228,545)(503,558,1661)(504,1797,658)(506,950,610)(508,761,1395)(509,1578,1568)(515,1556,776)(517,918,832)(518,607,557)(520,1393,1505)(521,1449,886)(524,840,1769)(525,981,1043)(526,822,1818)(527,1281,1708)(529,824,1459)(531,1377,1480)(534,1210,1627)(535,710,1621)(536,803,1549)(537,1591,1471)(538,1721,1247)(539,738,1553)(540,698,1689)(547,1787,612)(548,1747,618)(549,764,1021)(550,894,741)(551,1682,814)(552,1775,577)(553,1275,1755)(554,1295,1813)(555,1023,1192)(556,1108,1287)(560,1204,1071)(561,1663,920)(562,1504,642)(563,1645,1729)(564,1059,1615)(565,794,1672)(567,1092,1679)(571,835,904)(573,1846,1308)(574,1361,1239)(578,907,1800)(579,1724,1579)(580,1363,1099)(581,1535,641)(583,688,905)(586,1378,879)(587,1165,915)(588,1656,777)(591,1835,599)(595,1125,841)(600,1428,874)(601,890,1511)(602,1383,1054)(603,1140,1827)(605,770,1010)(606,1313,743)(609,1341,1130)(611,1290,1410)(615,1781,821)(616,1438,1639)(621,1727,858)(623,799,1082)(626,902,1171)(629,989,1566)(631,1429,1076)(632,1707,847)(634,921,1085)(635,673,946)(638,752,1592)(644,775,795)(648,923,826)(649,703,1816)(652,1166,1415)(653,717,812)(654,963,1518)(657,1015,883)(659,1607,1714)(662,699,1324)(665,1222,682)(666,1138,712)(670,897,1830)(672,1406,1642)(674,1170,772)(677,809,679)(678,1418,797)(684,1331,1468)(687,901,1776)(690,1399,1735)(692,1451,1058)(693,1289,1692)(694,1089,787)(695,848,1311)(697,1329,1052)(700,1757,1491)(701,1789,1716)(705,1783,1270)(706,852,945)(708,1577,1526)(711,1660,819)(714,1734,985)(718,733,1758)(721,779,1529)(722,855,1340)(723,1465,1135)(725,1375,1037)(729,1435,1444)(735,1342,1593)(750,1543,1538)(753,1482,1299)(754,1739,1520)(755,1233,1269)(756,880,1292)(757,1254,1474)(759,1641,940)(760,1401,1631)(763,1245,1792)(765,1327,1343)(766,1463,1728)(767,1094,877)(769,1822,1148)(771,1002,1330)(781,966,1699)(785,1736,1060)(789,1503,1109)(790,1389,1628)(791,1446,1785)(792,1772,1570)(793,1453,1648)(800,1013,863)(801,1770,1068)(804,1574,1386)(805,1353,1357)(806,873,1845)(815,955,1218)(830,991,1117)(834,1683,1011)(837,1184,1484)(838,1561,1440)(842,1413,1027)(843,1717,1531)(846,1450,1499)(849,856,1723)(850,1548,857)(853,1751,1033)(854,1268,1536)(859,1251,860)(862,970,1379)(867,1309,1695)(868,1278,1103)(869,948,1114)(871,1304,1702)(872,1743,1321)(875,1590,1552)(882,1746,1513)(885,1488,1599)(887,1794,1352)(888,1098,1095)(906,1447,1213)(909,1669,949)(910,1242,1618)(912,1738,938)(916,1509,1611)(917,1824,1359)(927,1490,1272)(931,1044,1492)(934,1300,1711)(944,1532,998)(947,1303,1394)(952,1585,1598)(957,1178,1372)(961,1367,1693)(965,1829,1198)(968,1839,1390)(969,1087,1740)(971,1624,1742)(973,1799,1773)(979,1073,1481)(980,1294,1544)(986,1405,1487)(992,1502,1041)(1000,1411,1777)(1007,1473,1495)(1009,1407,1840)(1016,1402,1844)(1017,1559,1606)(1018,1344,1750)(1030,1160,1485)(1040,1456,1506)(1042,1802,1762)(1045,1434,1376)(1046,1088,1153)(1064,1214,1636)(1065,1486,1427)(1075,1497,1647)(1077,1534,1620)(1091,1177,1634)(1093,1469,1801)(1100,1202,1795)(1101,1326,1569)(1105,1152,1694)(1111,1373,1582)(1112,1223,1826)(1113,1126,1759)(1115,1337,1356)(1121,1836,1159)(1129,1338,1600)(1142,1385,1610)(1146,1437,1183)(1157,1266,1280)(1164,1512,1194)(1167,1417,1731)(1179,1767,1713)(1186,1452,1455)(1187,1467,1253)(1199,1547,1517)(1201,1425,1291)(1203,1500,1302)(1205,1255,1671)(1209,1719,1670)(1211,1508,1409)(1216,1238,1704)(1219,1667,1780)(1221,1784,1439)(1224,1306,1725)(1225,1646,1284)(1226,1551,1681)(1230,1638,1732)(1244,1524,1458)(1256,1259,1525)(1264,1805,1498)(1274,1565,1528)(1277,1666,1335)(1286,1510,1420)(1317,1408,1764)(1332,1741,1849)(1339,1533,1754)(1355,1374,1596)(1431,1445,1554)(1433,1843,1608)(1558,1623,1665)(1597,1763,1842)(1613,1823,1616)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SL(2,1849)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 3627279905 subgroups in 123 conjugacy classes, 2 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $\PSL(2,1849)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_{25}$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$
37-Sylow subgroup: $P_{ 37 } \simeq$ $C_{37}$
43-Sylow subgroup: $P_{ 43 } \simeq$ $C_{43}^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $927 \times 927$ character table is not available for this group.

Rational character table

The $31 \times 31$ rational character table is not available for this group.