-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '3160680600.a', 'ambient_counter': 1, 'ambient_order': 3160680600, 'ambient_tex': '\\PSL(2,1849)', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': True, 'core_order': 3160680600, 'counter': 1, 'cyclic': False, 'direct': None, 'hall': 3675210, 'label': '3160680600.a.1.a1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': True, 'nilpotent': False, 'normal': True, 'old_label': '1.A', 'outer_equivalence': False, 'perfect': True, 'proper': False, 'quotient': '1.1', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': None, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 1, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_1', 'simple': True, 'solvable': False, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '3160680600.a', 'subgroup_hash': None, 'subgroup_order': 3160680600, 'subgroup_tex': '\\PSL(2,1849)', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '3160680600.a', 'aut_centralizer_order': None, 'aut_label': '1.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': None, 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [3988780083962, 143591533], 'label': '3160680600.a.1.a1.a1', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': None, 'normal_contained_in': None, 'normal_contains': None, 'normalizer': None, 'old_label': '1.A', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '1.a1.a1', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '1.1', 'all_subgroups_known': False, 'almost_simple': True, 'aut_abelian': None, 'aut_cyclic': None, 'aut_derived_length': None, 'aut_exponent': None, 'aut_gen_orders': None, 'aut_gens': [[3988780083962, 143591533], [2990485461073, 3350639226840], [409543303375, 7841608201885], [3703146372299, 2125290605913], [6669842743641, 1781306188652], [7290846228701, 1761610407679], [3439171311683, 10668843767327]], 'aut_group': None, 'aut_hash': None, 'aut_nilpotency_class': None, 'aut_nilpotent': None, 'aut_order': 12642722400, 'aut_permdeg': None, 'aut_perms': None, 'aut_phi_ratio': None, 'aut_solvable': None, 'aut_stats': [[1, 1, 1, 1], [2, 1710325, 1, 1], [3, 3420650, 1, 1], [4, 3420650, 1, 1], [5, 3416952, 2, 1], [6, 3420650, 1, 1], [7, 3420650, 1, 3], [11, 3420650, 1, 5], [12, 3420650, 2, 1], [14, 3420650, 1, 3], [21, 3420650, 1, 6], [22, 3420650, 1, 5], [25, 3416952, 2, 5], [28, 3420650, 2, 3], [33, 3420650, 2, 5], [37, 3416952, 2, 9], [42, 3420650, 1, 6], [43, 1709400, 2, 1], [44, 3420650, 1, 10], [66, 3420650, 2, 5], [77, 3420650, 2, 15], [84, 3420650, 2, 6], [132, 3420650, 2, 10], [154, 3420650, 2, 15], [185, 3416952, 2, 36], [231, 3420650, 2, 30], [308, 3420650, 2, 30], [462, 3420650, 2, 30], [924, 3420650, 2, 60], [925, 3416952, 2, 180]], 'aut_supersolvable': None, 'aut_tex': None, 'autcent_abelian': None, 'autcent_cyclic': None, 'autcent_exponent': None, 'autcent_group': None, 'autcent_hash': None, 'autcent_nilpotent': None, 'autcent_order': None, 'autcent_solvable': None, 'autcent_split': None, 'autcent_supersolvable': None, 'autcent_tex': None, 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': None, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1710325, 1], [3, 3420650, 1], [4, 3420650, 1], [5, 3416952, 2], [6, 3420650, 1], [7, 3420650, 3], [11, 3420650, 5], [12, 3420650, 2], [14, 3420650, 3], [21, 3420650, 6], [22, 3420650, 5], [25, 3416952, 10], [28, 3420650, 6], [33, 3420650, 10], [37, 3416952, 18], [42, 3420650, 6], [43, 1709400, 2], [44, 3420650, 10], [66, 3420650, 10], [77, 3420650, 30], [84, 3420650, 12], [132, 3420650, 20], [154, 3420650, 30], [185, 3416952, 72], [231, 3420650, 60], [308, 3420650, 60], [462, 3420650, 60], [924, 3420650, 120], [925, 3416952, 360]], 'center_label': '1.1', 'center_order': None, 'central_product': None, 'central_quotient': '3160680600.a', 'commutator_count': 1, 'commutator_label': '3160680600.a', 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['3160680600.a'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 0, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1710325, 1, 1], [3, 3420650, 1, 1], [4, 3420650, 1, 1], [5, 3416952, 2, 1], [6, 3420650, 1, 1], [7, 3420650, 3, 1], [11, 3420650, 5, 1], [12, 3420650, 2, 1], [14, 3420650, 3, 1], [21, 3420650, 6, 1], [22, 3420650, 5, 1], [25, 3416952, 10, 1], [28, 3420650, 6, 1], [33, 3420650, 10, 1], [37, 3416952, 18, 1], [42, 3420650, 6, 1], [43, 1709400, 1, 2], [44, 3420650, 10, 1], [66, 3420650, 10, 1], [77, 3420650, 30, 1], [84, 3420650, 12, 1], [132, 3420650, 20, 1], [154, 3420650, 30, 1], [185, 3416952, 72, 1], [231, 3420650, 60, 1], [308, 3420650, 60, 1], [462, 3420650, 60, 1], [924, 3420650, 120, 1], [925, 3416952, 360, 1]], 'element_repr_type': 'Lie', 'elementary': 1, 'eulerian_function': None, 'exponent': 36752100, 'exponents_of_order': [3, 2, 2, 1, 1, 1, 1], 'factors_of_aut_order': [2, 3, 5, 7, 11, 37, 43], 'factors_of_order': [2, 3, 5, 7, 11, 37, 43], 'faithful_reps': [[925, 1, 2], [1848, 1, 462], [1849, 1, 1], [1850, 1, 461]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '3160680600.a', 'hash': 4568413250399914240, 'hyperelementary': 1, 'inner_abelian': None, 'inner_cyclic': None, 'inner_exponent': None, 'inner_gen_orders': None, 'inner_gens': None, 'inner_hash': None, 'inner_nilpotent': None, 'inner_order': None, 'inner_split': None, 'inner_tex': '\\PSL(2,1849)', 'inner_used': None, 'irrC_degree': 925, 'irrQ_degree': 925, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': [[1, 1], [925, 2], [1848, 462], [1849, 1], [1850, 461]], 'label': '3160680600.a', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'PSL(2,1849)', 'ngens': 2, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 485, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 927, 'number_divisions': 31, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': None, 'number_subgroup_classes': 123, 'number_subgroups': 3627279905, 'old_label': None, 'order': 3160680600, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 1710325], [3, 3420650], [4, 3420650], [5, 6833904], [6, 3420650], [7, 10261950], [11, 17103250], [12, 6841300], [14, 10261950], [21, 20523900], [22, 17103250], [25, 34169520], [28, 20523900], [33, 34206500], [37, 61505136], [42, 20523900], [43, 3418800], [44, 34206500], [66, 34206500], [77, 102619500], [84, 41047800], [132, 68413000], [154, 102619500], [185, 246020544], [231, 205239000], [308, 205239000], [462, 205239000], [924, 410478000], [925, 1230102720]], 'outer_abelian': None, 'outer_cyclic': None, 'outer_equivalence': False, 'outer_exponent': None, 'outer_gen_orders': None, 'outer_gen_pows': None, 'outer_gens': None, 'outer_group': None, 'outer_hash': None, 'outer_nilpotent': None, 'outer_order': 4, 'outer_permdeg': None, 'outer_perms': None, 'outer_solvable': None, 'outer_supersolvable': None, 'outer_tex': None, 'pc_rank': None, 'perfect': True, 'permutation_degree': 1850, 'pgroup': 0, 'primary_abelian_invariants': [], 'quasisimple': True, 'rank': 2, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': [[1, 1], [925, 2], [1849, 1], [1850, 3], [3696, 1], [3700, 1], [5550, 2], [9250, 2], [11100, 3], [18480, 1], [18500, 3], [22200, 1], [33264, 1], [37000, 1], [55500, 2], [111000, 3], [133056, 1], [222000, 1], [665280, 1]], 'representations': {'Lie': [{'d': 2, 'q': 1849, 'gens': [3988780083962, 143591533], 'family': 'PSL'}, {'d': 2, 'q': 1849, 'family': 'PSU'}, {'d': 3, 'q': 1849, 'family': 'Omega'}, {'d': 4, 'q': 43, 'family': 'OmegaMinus'}, {'d': 3, 'q': 1849, 'family': 'POmega'}, {'d': 4, 'q': 43, 'family': 'POmegaMinus'}], 'Perm': {'d': 1850, 'gens': [18110019235482227263688273229002920727293334600308694973061490818522971669428141411292998492984678210398078942791096003778835286457983678102240769655144262829491612490509652629641834984694921251659595725011731494971228991708989372463839962283408370305620609063361140599810275215689764620587176484851820891120149684460966069577409218926361332101177702872265149608287055524339392754944998940665728008966398501069285501108024845032673880048611617691181038006493590320127354889235794733303779869131791617054376738668353712833238326921659760389531488553106315781231176042855180037047667208127194637024138103636094032800857529566209320160986084519210685996292170771441085740912411220352528429460468439123612158020636633376771961309844205154042526034110546351542059638471418908013051189750930244055252211199346314892926126307539731951636344063242588615264917725423509802646056305764019103774041584260919311609401546000140276028265869328351668587254188658774466106909901676875673955481291338760132349285476823012802478226288043583127481815328850646815052838499749654634657684983856650981182688673975536991167124427735546911694241038437639861399761855911454395472835624196657468905305791010927403287603937270529953014784167629571185166024462849664534952022093628161525837458867631373272005341059314080145209000988070188298645425775398574986535854729830424182408986668910234412332668960030826764057205049181549493311975345422117178783536677894804529953641960241926532027125403818241457918003414175825903340926524247793900834211451697046688583494796002744523800598654518628218512047837832017280694125319576819078421017987064891435272208760447722561872075660764791800280372281903340120891453204939427934108575816106196427204307607774115302064745807282341736219928308235884814157087842718089537769696612307515508860338275835078205300864909930471738864255450917945624660724467995485849849207721647698109419103999138424695560215206867445913861717755891482475364412640092716787880592823636029886640876714602427844944186591800179508131085816335620063486699355673304397481152315893964296252107060867805312100806846921768021464738945436365899347384030812233059998258034862068991438089964137104237569140920283993710875429857466584797253505896238176437102860754841111880124494793469804864164130639062716780811517795984737177846394711093609453156730515096548819792772290881013687267154738291454298108973997873295220292416531849932461693721248322197177082170050875748297257466669245211912124576781367157229216325267188421609035527541811196562450301512282140735047589065571285924897475786648051025343679752547412982949233722028669127926318168167003659207607319894350364953648033021127045393867028860439659897109966211997359847987437507208246265723628499472097257719122875426273621026361668352023159434258602368696955740427119966112294803622843836844655266841697619919442820284913494676029189683330146159139700996308478885273958539779574878773547106070380816469707097950066773257161495944647284250928604481316039672295669977106649053218797219296630850272808494896358199178755588624643092526405083951926256945320999783519128126833026551703642865115389350304969540998389573055054614334057764604887820727986026196330021353344419227760844122687478743354830666580192965012122651707110350629839435086197368668382727646575724290354055841542214645352174416821100832347651731481079062491816590874348975076062269939693880924469275876555709073714656027014798536023617584084390189483810610190910331227102192638627457391565924410790922159677533256102338116637550696551464970072282504743380724216553740056651804150465678655195938255493537181458645434210843138684192151857588349953378976452208099746580379410508951850786210769842315967797923129912167350024224284020360712096766179197984382856404868812796387293965846454112889239158809828755819314763056275749445585369212821438738535787230451264920940087596277207087877857698126188919565218077278427278958139398476200382244158005984343050058154730695751220513769537315545065039217728829461972630181439980058671678052981696434128991000022819274951887440857656022813972497674168948615051654556048535154607422072791353460227750432946996474122157954815274448301509594306185357580927746939806901673208163334748144438930064170250526730320183499355126908189359707753370632100718546712987020182039872761369045364287568433487532397251330905788332554809764699206291795367042864868925967615199134916780518401581709316929328707233289622886736395125624267877001744468169579961559015404055856432562768514388616998268053013670971869649436400549207486877162258242869772860070547079829931297466941909802954961627116631535754024208738990370000082872538131600327857800969931173195537147054306742042102263144156959234659464500748279379589231939154340705002791749728499373074524753631675529253985776732260792503846111454570148331953928652921437738870501007746314843802497910355763315710784643118354584116577290924931789446271026008516980237337947540930639465806501362205916100647670753219270929191181195152386621876911885067328530692157167690181725488375556878517176491818317695683088235640789433316723645435787109803392954023615735809960714352737963734674928488877609102338330855706129781170402066214083449439188824660290942816648605838419015735068, 56556826809635437801644458298420510861084414244202770867286743894938094756411389935953419662582694474300466771288810880648058306928583047023758638077338278657141368735345425306328280648452228951834786261304961000950807570780916293103126981638286381768099877340028470287429208463254254655660399650445576092697379689322445777336474422979390701296151450631918388207683185676810498631695506012012271772695906485365905212681559013200910048461824969411383291404585733963068270934816669626521379602931091795664022439916344699247619300366909698019199477285521357776919540437189145344141286278707319920691091614630561645608994992036542028393398100025487410271366449247112274914902606389652440826623353358643712938476126815365194371258723214619013703095404675823114712092892510765875951314405870773116079933503572886011969446148467369335012945887749026804584406693850926288962859112379684830986709442259492011945722787662895419156695252579908068414078607739298871186570633499315286672108809045902039506669194607504197164126679621827065367496434015098115939800958015058399777244158561940836261223816686913644008398687438708894157901575792951088251377964277325100790348809177783271852068053963903733135403935940508498498495977011799319617500390594312070789180981203899085704725563265945604417392064847381404830193700603770541728068893949337306422347655249602424663529150932372348702612808554631145749898479925614871369793707268486191069622677222486138763382611449304929897174041292202383946831558718188638246270144201147981760671033845855493000560331223049906211587066032171482304527881945350067153009266756351874187366371482400782848028110835457238327215829776546312898321969484584909624853986483768480484578614419341733590123721400603582118772868504521774044781263389690849418919131369500948152190305499938745177339542300656993076966697755358887127845631439380253815930421445559415400699467617201232230646901215243593848670955125616822627975865821146182427039260322817262303231970100674647124490705329863658706457285728318191283671288755541490799201401668468428937356826196027294453188701438849578290808779131485414116875220569459345536943208830085403450552082516502942740213120631402463725224438549039546645307788807198472688448155498504933233832900347937749042538983614562297543922000816705941774576031840212891567146658586554654545692062271157330362436554741577785369928041578634019659029202147216810989806596017740845062242436003769959829910472180957346569015859144232510454125776002518997684260209131901830291785292740017665339618832189446686950176966454045127909442123701829360715885717745728243837651925182965064393158038440795695333470840121581235847598120131017597097087215563965627391478849998181606263028461182780002209155560630981826279947640994021243618194562976449225909229592988617777219190206454186645254384975727336042308174179182802016148251474008167585253010795140228932314794606394654016664402626010698645752278641077702454951414800794182308296416056632283369265572827281671624943938340287176376447658882638459261409230114072570423217509833332456868940993651120566210142838161296179429279989217205346110678867385829444440233744568230016295754887678010115414215157848942236387949473123384024681116932801294692343522527364385926300522933675704069889543421544621802915710647323692918117441183311727557315704792504316668249867570269396378516666341173877302516280392754011188922751340771259843707387947845286779543477709140489042307275650558526360970948515438838817205411128841512354563605626769370274165678264394093791025416222208822643464316515028361414642379503364588049721106814478385294693178662830396165056295917623714632751364876676897814256023678121619597942720941067174017305187270663932292854241269661326142588687870004862453185045332547602640991483391392079033603163585780847515976572923530208737744297669600635312856049596586834378656965481055044865761822906656982795826820303417753203719954371399558289417728341146682880892663590882899323387503093819220268429280934328806985975996025649558082057020304423300105231852569599521589370223316976100687096377817476399889036606079501364225640732445287019086813008106353729356621842639358858488863534077042746425329565833290588694158487940945620613320062018918327314181645279800369368248383683360551339898789530447633708032429992143435714835985614281029283264522113836419690459322675182777869717047047379874878823495313807960698270787839024171333734490470467479978549061528268354817739536369823279506990744899224256323030286884655267213047945018213860014607213997227286640295330049698177568290320597654451122017447524739495590092998085027204612816285173445924946468805769738899904387127138890233743282543414152844893532040971283381624782682598231139864186300498583604192523349969485904115285711025185908635400398133837473603638136120572317820612926056517959766329013122053995217163751898552592709782783016468317580694784384156368823491382923068704042360362241088865657274004510837658152915467528590999523513323903783770658651660159335314612336761030915005847641826562398936657957583209004306836821125314171290044326504254418607718482135823294865217628584828995158800911833725588567152383028329438563344194251629537908916718948505468117846790256056683446356238149674613716937830124853]}}, 'schur_multiplier': None, 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 3160680600, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': '\\PSL(2,1849)', 'transitive_degree': 1850, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '1.1', 'all_subgroups_known': False, 'almost_simple': True, 'aut_abelian': None, 'aut_cyclic': None, 'aut_derived_length': None, 'aut_exponent': None, 'aut_gen_orders': None, 'aut_gens': [[3988780083962, 143591533], [2990485461073, 3350639226840], [409543303375, 7841608201885], [3703146372299, 2125290605913], [6669842743641, 1781306188652], [7290846228701, 1761610407679], [3439171311683, 10668843767327]], 'aut_group': None, 'aut_hash': None, 'aut_nilpotency_class': None, 'aut_nilpotent': None, 'aut_order': 12642722400, 'aut_permdeg': None, 'aut_perms': None, 'aut_phi_ratio': None, 'aut_solvable': None, 'aut_stats': [[1, 1, 1, 1], [2, 1710325, 1, 1], [3, 3420650, 1, 1], [4, 3420650, 1, 1], [5, 3416952, 2, 1], [6, 3420650, 1, 1], [7, 3420650, 1, 3], [11, 3420650, 1, 5], [12, 3420650, 2, 1], [14, 3420650, 1, 3], [21, 3420650, 1, 6], [22, 3420650, 1, 5], [25, 3416952, 2, 5], [28, 3420650, 2, 3], [33, 3420650, 2, 5], [37, 3416952, 2, 9], [42, 3420650, 1, 6], [43, 1709400, 2, 1], [44, 3420650, 1, 10], [66, 3420650, 2, 5], [77, 3420650, 2, 15], [84, 3420650, 2, 6], [132, 3420650, 2, 10], [154, 3420650, 2, 15], [185, 3416952, 2, 36], [231, 3420650, 2, 30], [308, 3420650, 2, 30], [462, 3420650, 2, 30], [924, 3420650, 2, 60], [925, 3416952, 2, 180]], 'aut_supersolvable': None, 'aut_tex': None, 'autcent_abelian': None, 'autcent_cyclic': None, 'autcent_exponent': None, 'autcent_group': None, 'autcent_hash': None, 'autcent_nilpotent': None, 'autcent_order': None, 'autcent_solvable': None, 'autcent_split': None, 'autcent_supersolvable': None, 'autcent_tex': None, 'autcentquo_abelian': None, 'autcentquo_cyclic': None, 'autcentquo_exponent': None, 'autcentquo_group': None, 'autcentquo_hash': None, 'autcentquo_nilpotent': None, 'autcentquo_order': None, 'autcentquo_solvable': None, 'autcentquo_supersolvable': None, 'autcentquo_tex': None, 'cc_stats': [[1, 1, 1], [2, 1710325, 1], [3, 3420650, 1], [4, 3420650, 1], [5, 3416952, 2], [6, 3420650, 1], [7, 3420650, 3], [11, 3420650, 5], [12, 3420650, 2], [14, 3420650, 3], [21, 3420650, 6], [22, 3420650, 5], [25, 3416952, 10], [28, 3420650, 6], [33, 3420650, 10], [37, 3416952, 18], [42, 3420650, 6], [43, 1709400, 2], [44, 3420650, 10], [66, 3420650, 10], [77, 3420650, 30], [84, 3420650, 12], [132, 3420650, 20], [154, 3420650, 30], [185, 3416952, 72], [231, 3420650, 60], [308, 3420650, 60], [462, 3420650, 60], [924, 3420650, 120], [925, 3416952, 360]], 'center_label': '1.1', 'center_order': None, 'central_product': None, 'central_quotient': '3160680600.a', 'commutator_count': 1, 'commutator_label': '3160680600.a', 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['3160680600.a'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 0, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1710325, 1, 1], [3, 3420650, 1, 1], [4, 3420650, 1, 1], [5, 3416952, 2, 1], [6, 3420650, 1, 1], [7, 3420650, 3, 1], [11, 3420650, 5, 1], [12, 3420650, 2, 1], [14, 3420650, 3, 1], [21, 3420650, 6, 1], [22, 3420650, 5, 1], [25, 3416952, 10, 1], [28, 3420650, 6, 1], [33, 3420650, 10, 1], [37, 3416952, 18, 1], [42, 3420650, 6, 1], [43, 1709400, 1, 2], [44, 3420650, 10, 1], [66, 3420650, 10, 1], [77, 3420650, 30, 1], [84, 3420650, 12, 1], [132, 3420650, 20, 1], [154, 3420650, 30, 1], [185, 3416952, 72, 1], [231, 3420650, 60, 1], [308, 3420650, 60, 1], [462, 3420650, 60, 1], [924, 3420650, 120, 1], [925, 3416952, 360, 1]], 'element_repr_type': 'Lie', 'elementary': 1, 'eulerian_function': None, 'exponent': 36752100, 'exponents_of_order': [3, 2, 2, 1, 1, 1, 1], 'factors_of_aut_order': [2, 3, 5, 7, 11, 37, 43], 'factors_of_order': [2, 3, 5, 7, 11, 37, 43], 'faithful_reps': [[925, 1, 2], [1848, 1, 462], [1849, 1, 1], [1850, 1, 461]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '3160680600.a', 'hash': 4568413250399914240, 'hyperelementary': 1, 'inner_abelian': None, 'inner_cyclic': None, 'inner_exponent': None, 'inner_gen_orders': None, 'inner_gens': None, 'inner_hash': None, 'inner_nilpotent': None, 'inner_order': None, 'inner_split': None, 'inner_tex': '\\PSL(2,1849)', 'inner_used': None, 'irrC_degree': 925, 'irrQ_degree': 925, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': [[1, 1], [925, 2], [1848, 462], [1849, 1], [1850, 461]], 'label': '3160680600.a', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'PSL(2,1849)', 'ngens': 2, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 485, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 927, 'number_divisions': 31, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': None, 'number_subgroup_classes': 123, 'number_subgroups': 3627279905, 'old_label': None, 'order': 3160680600, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 1710325], [3, 3420650], [4, 3420650], [5, 6833904], [6, 3420650], [7, 10261950], [11, 17103250], [12, 6841300], [14, 10261950], [21, 20523900], [22, 17103250], [25, 34169520], [28, 20523900], [33, 34206500], [37, 61505136], [42, 20523900], [43, 3418800], [44, 34206500], [66, 34206500], [77, 102619500], [84, 41047800], [132, 68413000], [154, 102619500], [185, 246020544], [231, 205239000], [308, 205239000], [462, 205239000], [924, 410478000], [925, 1230102720]], 'outer_abelian': None, 'outer_cyclic': None, 'outer_equivalence': False, 'outer_exponent': None, 'outer_gen_orders': None, 'outer_gen_pows': None, 'outer_gens': None, 'outer_group': None, 'outer_hash': None, 'outer_nilpotent': None, 'outer_order': 4, 'outer_permdeg': None, 'outer_perms': None, 'outer_solvable': None, 'outer_supersolvable': None, 'outer_tex': None, 'pc_rank': None, 'perfect': True, 'permutation_degree': 1850, 'pgroup': 0, 'primary_abelian_invariants': [], 'quasisimple': True, 'rank': 2, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': [[1, 1], [925, 2], [1849, 1], [1850, 3], [3696, 1], [3700, 1], [5550, 2], [9250, 2], [11100, 3], [18480, 1], [18500, 3], [22200, 1], [33264, 1], [37000, 1], [55500, 2], [111000, 3], [133056, 1], [222000, 1], [665280, 1]], 'representations': {'Lie': [{'d': 2, 'q': 1849, 'gens': [3988780083962, 143591533], 'family': 'PSL'}, {'d': 2, 'q': 1849, 'family': 'PSU'}, {'d': 3, 'q': 1849, 'family': 'Omega'}, {'d': 4, 'q': 43, 'family': 'OmegaMinus'}, {'d': 3, 'q': 1849, 'family': 'POmega'}, {'d': 4, 'q': 43, 'family': 'POmegaMinus'}], 'Perm': {'d': 1850, 'gens': [18110019235482227263688273229002920727293334600308694973061490818522971669428141411292998492984678210398078942791096003778835286457983678102240769655144262829491612490509652629641834984694921251659595725011731494971228991708989372463839962283408370305620609063361140599810275215689764620587176484851820891120149684460966069577409218926361332101177702872265149608287055524339392754944998940665728008966398501069285501108024845032673880048611617691181038006493590320127354889235794733303779869131791617054376738668353712833238326921659760389531488553106315781231176042855180037047667208127194637024138103636094032800857529566209320160986084519210685996292170771441085740912411220352528429460468439123612158020636633376771961309844205154042526034110546351542059638471418908013051189750930244055252211199346314892926126307539731951636344063242588615264917725423509802646056305764019103774041584260919311609401546000140276028265869328351668587254188658774466106909901676875673955481291338760132349285476823012802478226288043583127481815328850646815052838499749654634657684983856650981182688673975536991167124427735546911694241038437639861399761855911454395472835624196657468905305791010927403287603937270529953014784167629571185166024462849664534952022093628161525837458867631373272005341059314080145209000988070188298645425775398574986535854729830424182408986668910234412332668960030826764057205049181549493311975345422117178783536677894804529953641960241926532027125403818241457918003414175825903340926524247793900834211451697046688583494796002744523800598654518628218512047837832017280694125319576819078421017987064891435272208760447722561872075660764791800280372281903340120891453204939427934108575816106196427204307607774115302064745807282341736219928308235884814157087842718089537769696612307515508860338275835078205300864909930471738864255450917945624660724467995485849849207721647698109419103999138424695560215206867445913861717755891482475364412640092716787880592823636029886640876714602427844944186591800179508131085816335620063486699355673304397481152315893964296252107060867805312100806846921768021464738945436365899347384030812233059998258034862068991438089964137104237569140920283993710875429857466584797253505896238176437102860754841111880124494793469804864164130639062716780811517795984737177846394711093609453156730515096548819792772290881013687267154738291454298108973997873295220292416531849932461693721248322197177082170050875748297257466669245211912124576781367157229216325267188421609035527541811196562450301512282140735047589065571285924897475786648051025343679752547412982949233722028669127926318168167003659207607319894350364953648033021127045393867028860439659897109966211997359847987437507208246265723628499472097257719122875426273621026361668352023159434258602368696955740427119966112294803622843836844655266841697619919442820284913494676029189683330146159139700996308478885273958539779574878773547106070380816469707097950066773257161495944647284250928604481316039672295669977106649053218797219296630850272808494896358199178755588624643092526405083951926256945320999783519128126833026551703642865115389350304969540998389573055054614334057764604887820727986026196330021353344419227760844122687478743354830666580192965012122651707110350629839435086197368668382727646575724290354055841542214645352174416821100832347651731481079062491816590874348975076062269939693880924469275876555709073714656027014798536023617584084390189483810610190910331227102192638627457391565924410790922159677533256102338116637550696551464970072282504743380724216553740056651804150465678655195938255493537181458645434210843138684192151857588349953378976452208099746580379410508951850786210769842315967797923129912167350024224284020360712096766179197984382856404868812796387293965846454112889239158809828755819314763056275749445585369212821438738535787230451264920940087596277207087877857698126188919565218077278427278958139398476200382244158005984343050058154730695751220513769537315545065039217728829461972630181439980058671678052981696434128991000022819274951887440857656022813972497674168948615051654556048535154607422072791353460227750432946996474122157954815274448301509594306185357580927746939806901673208163334748144438930064170250526730320183499355126908189359707753370632100718546712987020182039872761369045364287568433487532397251330905788332554809764699206291795367042864868925967615199134916780518401581709316929328707233289622886736395125624267877001744468169579961559015404055856432562768514388616998268053013670971869649436400549207486877162258242869772860070547079829931297466941909802954961627116631535754024208738990370000082872538131600327857800969931173195537147054306742042102263144156959234659464500748279379589231939154340705002791749728499373074524753631675529253985776732260792503846111454570148331953928652921437738870501007746314843802497910355763315710784643118354584116577290924931789446271026008516980237337947540930639465806501362205916100647670753219270929191181195152386621876911885067328530692157167690181725488375556878517176491818317695683088235640789433316723645435787109803392954023615735809960714352737963734674928488877609102338330855706129781170402066214083449439188824660290942816648605838419015735068, 56556826809635437801644458298420510861084414244202770867286743894938094756411389935953419662582694474300466771288810880648058306928583047023758638077338278657141368735345425306328280648452228951834786261304961000950807570780916293103126981638286381768099877340028470287429208463254254655660399650445576092697379689322445777336474422979390701296151450631918388207683185676810498631695506012012271772695906485365905212681559013200910048461824969411383291404585733963068270934816669626521379602931091795664022439916344699247619300366909698019199477285521357776919540437189145344141286278707319920691091614630561645608994992036542028393398100025487410271366449247112274914902606389652440826623353358643712938476126815365194371258723214619013703095404675823114712092892510765875951314405870773116079933503572886011969446148467369335012945887749026804584406693850926288962859112379684830986709442259492011945722787662895419156695252579908068414078607739298871186570633499315286672108809045902039506669194607504197164126679621827065367496434015098115939800958015058399777244158561940836261223816686913644008398687438708894157901575792951088251377964277325100790348809177783271852068053963903733135403935940508498498495977011799319617500390594312070789180981203899085704725563265945604417392064847381404830193700603770541728068893949337306422347655249602424663529150932372348702612808554631145749898479925614871369793707268486191069622677222486138763382611449304929897174041292202383946831558718188638246270144201147981760671033845855493000560331223049906211587066032171482304527881945350067153009266756351874187366371482400782848028110835457238327215829776546312898321969484584909624853986483768480484578614419341733590123721400603582118772868504521774044781263389690849418919131369500948152190305499938745177339542300656993076966697755358887127845631439380253815930421445559415400699467617201232230646901215243593848670955125616822627975865821146182427039260322817262303231970100674647124490705329863658706457285728318191283671288755541490799201401668468428937356826196027294453188701438849578290808779131485414116875220569459345536943208830085403450552082516502942740213120631402463725224438549039546645307788807198472688448155498504933233832900347937749042538983614562297543922000816705941774576031840212891567146658586554654545692062271157330362436554741577785369928041578634019659029202147216810989806596017740845062242436003769959829910472180957346569015859144232510454125776002518997684260209131901830291785292740017665339618832189446686950176966454045127909442123701829360715885717745728243837651925182965064393158038440795695333470840121581235847598120131017597097087215563965627391478849998181606263028461182780002209155560630981826279947640994021243618194562976449225909229592988617777219190206454186645254384975727336042308174179182802016148251474008167585253010795140228932314794606394654016664402626010698645752278641077702454951414800794182308296416056632283369265572827281671624943938340287176376447658882638459261409230114072570423217509833332456868940993651120566210142838161296179429279989217205346110678867385829444440233744568230016295754887678010115414215157848942236387949473123384024681116932801294692343522527364385926300522933675704069889543421544621802915710647323692918117441183311727557315704792504316668249867570269396378516666341173877302516280392754011188922751340771259843707387947845286779543477709140489042307275650558526360970948515438838817205411128841512354563605626769370274165678264394093791025416222208822643464316515028361414642379503364588049721106814478385294693178662830396165056295917623714632751364876676897814256023678121619597942720941067174017305187270663932292854241269661326142588687870004862453185045332547602640991483391392079033603163585780847515976572923530208737744297669600635312856049596586834378656965481055044865761822906656982795826820303417753203719954371399558289417728341146682880892663590882899323387503093819220268429280934328806985975996025649558082057020304423300105231852569599521589370223316976100687096377817476399889036606079501364225640732445287019086813008106353729356621842639358858488863534077042746425329565833290588694158487940945620613320062018918327314181645279800369368248383683360551339898789530447633708032429992143435714835985614281029283264522113836419690459322675182777869717047047379874878823495313807960698270787839024171333734490470467479978549061528268354817739536369823279506990744899224256323030286884655267213047945018213860014607213997227286640295330049698177568290320597654451122017447524739495590092998085027204612816285173445924946468805769738899904387127138890233743282543414152844893532040971283381624782682598231139864186300498583604192523349969485904115285711025185908635400398133837473603638136120572317820612926056517959766329013122053995217163751898552592709782783016468317580694784384156368823491382923068704042360362241088865657274004510837658152915467528590999523513323903783770658651660159335314612336761030915005847641826562398936657957583209004306836821125314171290044326504254418607718482135823294865217628584828995158800911833725588567152383028329438563344194251629537908916718948505468117846790256056683446356238149674613716937830124853]}}, 'schur_multiplier': None, 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 3160680600, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': '\\PSL(2,1849)', 'transitive_degree': 1850, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '1.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 0, 'aut_exponent': 1, 'aut_gen_orders': [], 'aut_gens': [], 'aut_group': '1.1', 'aut_hash': 1, 'aut_nilpotency_class': 0, 'aut_nilpotent': True, 'aut_order': 1, 'aut_permdeg': 1, 'aut_perms': [], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_1', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': True, 'complex_characters_known': True, 'composition_factors': [], 'composition_length': 0, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 0, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 1, 'exponent': 1, 'exponents_of_order': [], 'factors_of_aut_order': [], 'factors_of_order': [], 'faithful_reps': [[1, 1, 1]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '1.1', 'hash': 1, 'hyperelementary': 1, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [], 'inner_gens': [], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 1, 'irrQ_dim': 1, 'irrR_degree': 1, 'irrep_stats': [[1, 1]], 'label': '1.1', 'linC_count': 1, 'linC_degree': 0, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 0, 'linQ_degree_count': 1, 'linQ_dim': 0, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 0, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C1', 'ngens': 0, 'nilpotency_class': 0, 'nilpotent': True, 'normal_counts': [1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 1, 'number_characteristic_subgroups': 1, 'number_conjugacy_classes': 1, 'number_divisions': 1, 'number_normal_subgroups': 1, 'number_subgroup_autclasses': 1, 'number_subgroup_classes': 1, 'number_subgroups': 1, 'old_label': None, 'order': 1, 'order_factorization_type': 0, 'order_stats': [[1, 1]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 1, 'outer_gen_orders': [], 'outer_gen_pows': [], 'outer_gens': [], 'outer_group': '1.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 1, 'outer_permdeg': 1, 'outer_perms': [], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_1', 'pc_rank': 0, 'perfect': True, 'permutation_degree': 1, 'pgroup': 1, 'primary_abelian_invariants': [], 'quasisimple': False, 'rank': 0, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 1]], 'representations': {'PC': {'code': 0, 'gens': [], 'pres': []}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_1', 'transitive_degree': 1, 'wreath_data': None, 'wreath_product': False}