Subgroup ($H$) information
| Description: | $C_2\times S_4$ | 
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Index: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | 
		
    $\langle(1,2)(3,4), (3,6)(4,5)(7,12)(8,10)(9,11), (1,6,3)(2,5,4), (3,4)(5,6), (5,6)(8,9)(10,11)\rangle$
    
    
    
         | 
| Derived length: | $3$ | 
The subgroup is nonabelian, monomial (hence solvable), and rational.
Ambient group ($G$) information
| Description: | $C_2\times C_3^3:S_4^2$ | 
| Order: | \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_3^3.A_4^2.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
Related subgroups
| Centralizer: | not computed | |
| Normalizer: | $C_2^2\times C_6\times S_4$ | |
| Normal closure: | $C_6^3:C_3:S_4$ | |
| Core: | $A_4$ | |
| Minimal over-subgroups: | $C_2^2\times S_4$ | |
| Maximal under-subgroups: | $S_4$ | $D_6$ | 
Other information
| Number of subgroups in this autjugacy class | $54$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | $C_2\times C_3^3:S_4^2$ |