Subgroup ($H$) information
| Description: | $C_2^2\times S_4$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Index: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(1,2)(3,4), (1,6,3)(2,5,4), (3,4)(5,6), (3,6)(4,5)(7,10)(8,11)(9,12), (7,10)(8,11)(9,12), (5,6)(7,12)(8,11)(9,10)\rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian, monomial (hence solvable), and rational.
Ambient group ($G$) information
| Description: | $C_2\times C_3^3:S_4^2$ |
| Order: | \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_3^3.A_4^2.C_2^4$ |
| $\operatorname{Aut}(H)$ | $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| $W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $108$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $C_2\times C_3^3:S_4^2$ |