Properties

Label 31104.mi.324.D
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times S_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(3,4), (1,6,3)(2,5,4), (3,4)(5,6), (3,6)(4,5)(7,10)(8,11)(9,12), (7,10)(8,11)(9,12), (5,6)(7,12)(8,11)(9,10)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2\times C_3^3:S_4^2$
Order: \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^3.A_4^2.C_2^4$
$\operatorname{Aut}(H)$ $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^2\times C_6\times S_4$
Normal closure:$C_2\times C_3^3:S_4^2$
Core:$S_4$
Minimal over-subgroups:$C_2\times C_6\times S_4$$D_6\times S_4$
Maximal under-subgroups:$C_2\times S_4$$C_2\times S_4$$C_2\times S_4$$C_2\times S_4$$C_2\times D_6$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2\times C_3^3:S_4^2$