Properties

Label 31104.mi.2.c1
Order $ 2^{6} \cdot 3^{5} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3:C_3:S_4$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Index: \(2\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(7,12,15,8,11,13,9,10,14), (10,12,11), (7,8)(13,15), (1,2)(3,4)(11,12)(13,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times C_3^3:S_4^2$
Order: \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3^3.A_4^2.C_2^4$
$\operatorname{Aut}(H)$ $C_6^3.(D_6\times S_4)$, of order \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
$W$$C_3^3:S_4^2$, of order \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_3^3:S_4^2$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2\times C_3^3:S_4^2$
Maximal under-subgroups:$C_2\times C_3^3:A_4^2$$(A_4\times C_3^3):S_4$$C_2\times C_3^3:\GL(2,\mathbb{Z}/4)$$C_6^3:S_4$$C_6^3:S_4$$\He_3:(C_6\times S_4)$$C_2\times C_3^4:S_4$$A_4^2:C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:S_4^2$