Subgroup ($H$) information
| Description: | $C_6^3:C_3:S_4$ |
| Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
| Index: | \(2\) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Generators: |
$\langle(7,12,15,8,11,13,9,10,14), (10,12,11), (7,8)(13,15), (1,2)(3,4)(11,12)(13,15) \!\cdots\! \rangle$
|
| Derived length: | $4$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_2\times C_3^3:S_4^2$ |
| Order: | \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_3^3.A_4^2.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_6^3.(D_6\times S_4)$, of order \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \) |
| $W$ | $C_3^3:S_4^2$, of order \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_3^3:S_4^2$ |