Properties

Label 3080.a.70.b1.b1
Order $ 2^{2} \cdot 11 $
Index $ 2 \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Index: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a, b^{140}, b^{770}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{11}\times D_{140}$
Order: \(3080\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(1540\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{22}$
Normalizer:$D_4\times C_{11}$
Normal closure:$C_{11}\times D_{70}$
Core:$C_{22}$
Minimal over-subgroups:$C_{11}\times D_{14}$$C_{11}\times D_{10}$$D_4\times C_{11}$
Maximal under-subgroups:$C_{22}$$C_{22}$$C_2^2$
Autjugate subgroups:3080.a.70.b1.a1

Other information

Number of subgroups in this conjugacy class$35$
Möbius function$-1$
Projective image$D_{70}$