Properties

Label 3080.a.14.b1.b1
Order $ 2^{2} \cdot 5 \cdot 11 $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times D_{10}$
Order: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a, b^{140}, b^{924}, b^{770}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{11}\times D_{140}$
Order: \(3080\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(1540\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.C_{30}.C_2^5$
$\operatorname{Aut}(H)$ $D_{10}:C_{20}$, of order \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
$\operatorname{res}(S)$$D_{10}:C_{20}$, of order \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{11}\times D_{20}$
Normal closure:$C_{11}\times D_{70}$
Core:$C_{110}$
Minimal over-subgroups:$C_{11}\times D_{70}$$C_{11}\times D_{20}$
Maximal under-subgroups:$C_{110}$$D_5\times C_{11}$$C_2\times C_{22}$$D_{10}$
Autjugate subgroups:3080.a.14.b1.a1

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$1$
Projective image$D_{70}$