Properties

Label 3072.gg.24.kq1
Order $ 2^{7} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:C_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,2)(6,8), (1,4,6,7)(2,3,8,5)(9,14)(10,13)(11,16)(12,15), (1,5,8,3)(2,7,6,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^5:(C_4\times S_4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:C_3.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_2^7.(D_4\times S_4)$, of order \(24576\)\(\medspace = 2^{13} \cdot 3 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^6.C_2^4$
Normal closure:$C_2^5:S_4$
Core:$C_2^4$
Minimal over-subgroups:$C_2^6:C_4$$C_2^5:D_4$$C_2^5:D_4$
Maximal under-subgroups:$C_2^4$$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed