Properties

Label 3072.gg.4.j1
Order $ 2^{8} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:S_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,4,2,3)(5,8,7,6)(9,10,15,16)(11,12,13,14), (3,4)(5,7), (3,7)(4,5), (1,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^5:(C_4\times S_4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:C_3.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_2^5.(D_4\times S_4)$, of order \(6144\)\(\medspace = 2^{11} \cdot 3 \)
$\card{W}$\(768\)\(\medspace = 2^{8} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^5:(C_4\times S_4)$
Complements:$C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$C_2^4:C_3.C_2^4.C_2$
Maximal under-subgroups:$C_2^5:A_4$$C_2^2\wr S_3$$C_2^4.S_4$$C_2^4:S_4$$C_2^4:S_4$$C_2^5:D_4$$C_2\times \GL(2,\mathbb{Z}/4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed