Properties

Label 3072.gg.768.H
Order $ 2^{2} $
Index $ 2^{8} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(9,15)(11,13), (1,4)(2,5)(3,8)(6,7)(9,13,15,11)(12,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_2^5:(C_4\times S_4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:C_3.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure:$C_2^3.\GL(2,\mathbb{Z}/4)$
Core:$C_1$
Minimal over-subgroups:$C_2^3.S_4$$C_2^5:C_4$$C_2^3.C_2^4$$C_2^3.C_4^2$$C_2^3.C_4^2$$C_2^4.D_4$$C_2^4.C_2^3$$C_2^4.C_2^3$$C_2^5:C_4$$C_2.D_4^2$$C_2^4.D_4$$C_2^5:C_4$$C_2^3.C_2^4$$C_2^3.C_4^2$$C_2^5:C_4$$C_2^4.D_4$$C_2^3.C_4^2$$C_2^3.C_4^2$$C_2^5:C_4$$C_2^2.S_4$$C_2^2.S_4$$C_2^3:C_4$$C_2^3:C_4$$C_2^3:C_4$$C_2^3:C_4$$C_2^3:C_4$$C_2\times C_4$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$48$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed