Subgroup ($H$) information
| Description: | $C_2^5:D_4$ | 
| Order: | \(256\)\(\medspace = 2^{8} \) | 
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | 
		
    $\langle(1,2)(6,8), (1,5,8,3)(2,7,6,4)(9,10,15,16)(11,12,13,14), (9,13)(10,14)(11,15) \!\cdots\! \rangle$
    
    
    
         | 
| Nilpotency class: | $3$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_2^5:(C_4\times S_4)$ | 
| Order: | \(3072\)\(\medspace = 2^{10} \cdot 3 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4:C_3.C_2^5.C_2^3$ | 
| $\operatorname{Aut}(H)$ | $C_2^8.C_2^6.C_2^2$ | 
| $\card{W}$ | not computed | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | not computed |