Properties

Label 3072.cc.48.g1.a1
Order $ 2^{6} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_8$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 27 & 24 \\ 8 & 19 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 31 & 0 \\ 0 & 31 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_6:C_8$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times A_4).C_2^5.C_2^6$
$\operatorname{Aut}(H)$ $C_2.C_2^7:\GL(3,2)$, of order \(43008\)\(\medspace = 2^{11} \cdot 3 \cdot 7 \)
$\card{W}$\(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^3\times C_4\times C_{16}$
Normalizer:$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_2^3:C_{24}$$C_2^4\times C_8$$C_2^3\times C_{16}$$C_2^3\times C_{16}$
Maximal under-subgroups:$C_2^3\times C_4$$C_2^2\times C_8$$C_2^2\times C_8$$C_2^2\times C_8$$C_2^2\times C_8$$C_2^2\times C_8$$C_2^2\times C_8$

Other information

Möbius function not computed
Projective image not computed