Properties

Label 3024.bo.84.a1.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times A_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{2}c^{3}, c^{2}, c^{3}, d^{7}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3:S_4\times F_7$
Order: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times F_7$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Automorphism Group: $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_3:S_3:S_4$
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times F_7$
Normalizer:$C_3:S_4\times F_7$
Complements:$C_2\times F_7$ $C_2\times F_7$
Minimal over-subgroups:$A_4\times C_{21}$$C_3^2\times A_4$$C_3:S_4$$C_6\times A_4$$C_3:S_4$
Maximal under-subgroups:$C_2\times C_6$$A_4$$A_4$$A_4$$C_3^2$

Other information

Möbius function$14$
Projective image$C_3:S_4\times F_7$