Properties

Label 3024.bo.1.a1.a1
Order $ 2^{4} \cdot 3^{3} \cdot 7 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_4\times F_7$
Order: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Index: $1$
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a^{3}, c^{2}, c^{3}, a^{2}d^{7}, d^{2}, d^{7}, b^{3}, b^{2}c^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and monomial.

Ambient group ($G$) information

Description: $C_3:S_4\times F_7$
Order: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_3:S_3:S_4$
$\operatorname{Aut}(H)$ $F_7\times C_3:S_3:S_4$
$W$$C_3:S_4\times F_7$, of order \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3:S_4\times F_7$
Complements:$C_1$
Maximal under-subgroups:$C_3\times A_4\times F_7$$C_{21}:(C_3\times S_4)$$C_{21}:(C_3\times S_4)$$D_7\times C_3:S_4$$C_3:D_4\times F_7$$S_4\times F_7$$S_4\times F_7$$S_4\times F_7$$C_3:S_3\times F_7$$C_6^2:D_6$

Other information

Möbius function$1$
Projective image$C_3:S_4\times F_7$