Properties

Label 3024.bo.2.c1.a1
Order $ 2^{3} \cdot 3^{3} \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}:(C_3\times S_4)$
Order: \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
Index: \(2\)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a^{3}b^{3}, c^{3}, b^{2}c^{3}, c^{2}, a^{2}d^{7}, d^{7}, d^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3:S_4\times F_7$
Order: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_3:S_3:S_4$
$\operatorname{Aut}(H)$ $F_7\times C_3:S_3:S_4$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(18144\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3:S_4\times F_7$, of order \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3:S_4\times F_7$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_3:S_4\times F_7$
Maximal under-subgroups:$A_4\times C_{21}:C_3$$C_{21}:S_4$$D_{42}:C_6$$A_4:F_7$$A_4:F_7$$A_4:F_7$$C_3^2:F_7$$C_3^2:S_4$

Other information

Möbius function$-1$
Projective image$C_3:S_4\times F_7$