Properties

Label 3024.bo.6.o1.c1
Order $ 2^{3} \cdot 3^{2} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:F_7$
Order: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a^{3}b^{3}, d^{7}, b^{2}c, d^{2}, a^{2}d^{7}, c^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3:S_4\times F_7$
Order: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_3:S_3:S_4$
$\operatorname{Aut}(H)$ $S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_4\times F_7$
Normal closure:$C_{21}:(C_3\times S_4)$
Core:$A_4\times C_7:C_3$
Minimal over-subgroups:$C_{21}:(C_3\times S_4)$$S_4\times F_7$
Maximal under-subgroups:$A_4\times C_7:C_3$$D_{14}:C_6$$C_7:S_4$$C_{21}:C_6$$C_3\times S_4$
Autjugate subgroups:3024.bo.6.o1.a13024.bo.6.o1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3:S_4\times F_7$